Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аланин содержание в белках

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]


    Содержание аминокислот и порядок их соединения в разных белках может сильно различаться. Но чаще всего в растительных белках встречается 20 аминокислот аланин, аргинин, аспарагиновая кислота (или аспарагин), валин, гистидин, глицин, глутаминовая кислота (или глутамин), изолейцин, лейцин, лизин, метионин, оксипролин, пролин серин, тирозин, треонин, триптофан, фенилаланин, цистеин и цистин Некоторых из перечисленных аминокислот нет в отдельных раститель ных белках, в некоторых белках содержатся другие аминокислоты не входящие в число перечисленных. Аминокислотный состав опре деляет полноценность белков при использовании их в питании или на корм. [c.430]

    Алании и глутамин в крови. В плазме крови содержатся все аминокислоты, необходимые для синтеза белков в организме, но в разных количествах. При этом концентрации двух аминокислот, а именно аланина и глутамина намного выше, чем остальных. Объясните возможные причины высокого содержания этих двух аминокислот. [c.777]

    Вопросу анализа аминокислот методом хроматографии на бумаге посвящено большое число работ советских и иностранных авторов. Однако почти все они связаны с разделением аминокислот белков и других биологических препаратов [61. Наша попытка применить их для анализа мелассы не дала положительных результатов, что можно объяснить мешающим действием остальных компонентов мелассы, ио отношению к которым содержание отдельных аминокислот составляет лишь 0,1—3 вес. %. Описанный в литературе метод 17, 81, состоящий в сорбции аминокислот на катионите с последующей их элюцией и идентификацией на бумаге неудобен, так как требует сложной специальной аппаратуры и чрезмерно длителен. Первой частью нашего исследования было хроматографическое разделение искусственной смеси из десяти аминокислот, приблизительно имитирующей аминокислотный состав мелассы [1, 81. Смесь включала лизин, аргинин, серии, глицин, аспарагиновую и глютаминовую кислоты, а-аланин, валин, метионин и лейцин. Растворы аминокислот готовили в 15%-ном этиловом спирте с концентрацией 0,5—1 у аминокислоты в 1 мкл. [c.212]

    Содержание гликоколя и аланина в белках животного Вычислено на 16 о азота происхождения  [c.333]

    Основная масса азота большинства аминокислот проходит в реакциях обмена через стадии превращений в глютаминовую и аспарагиновую кислоты или а-аланин. Содержание этих трех аминокислот в белках достигает 25—30%. Кроме того, в процессах обмена в животных тканях указанные аминокислоты возникают из других аминокислот. Так, глютаминовая кислота образуется из пролина, оксипролина, орнитина и, возможно, из гистидина аланин образуется из триптофана, цистина и, вероятно, из серина. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, составляет также около 25—30% белковой молекулы. В результате около 50—60% белковой молекулы составляют аспарагиновая кислота, аланин, глютаминовая кислота и аминокислоты, связанные с ними прямым переходом в обмене. [c.354]


    Белки — это сложные вещества, в состав которых входят углерод, водород, кислород, азот, сера и фосфор. В природных условиях белки легко разрушаются до исходных мономеров и аминокислот. Поэтому в неживой природе вместо высокополимерных соединений белка встречаются обычно их мономерные структурные единицы — аминокислоты. Содержание аминокислот в современных морских осадках составляет примерно 0,5 мг/л. В осадочных породах аминокислоты определены в остатках раковин моллюсков, костей рыб и т. д. Одна часть ископаемых аминокислот связана с полимерами небелкового характера (гуминовыми веществами), другая находится в адсорбированном состоянии. По-видимому, наиболее устойчивы нейтральные аминокислоты, например р-аланин НгМ—СНг—СНг— -СООН. [c.211]

    Содержание гликоколя и аланина в растительных белках [c.336]

    Таким образом, изучение содержания отдельных аминокислот у видов рода копеечник позволило обнаружить, что они накапливают в преобладающих количествах аспарагиновую и глутаминовую кислоты, аланин, пролин, фенилаланин, метионин, валин и аспарагин, а также в отдельных органах растений гистидин, глицин, серии, лейцин, изолейцин, аргинин, треонин. Определение содержания свободных аминокислот и аминокислот белка у пяти видов рода копеечник в разные фазы вегетации позволило выявить их изменения в процессе индивидуального развития растения. Общим для всех видов является максимальное содержание [c.56]

    В опытах Т. Поссингема с томатами при цинковой недостаточности отмечено снижение содержания белка и значительное накопление аминокислот и особенно амидов. Весьма характерным было повышение содержания в растениях экстрагируемых глутамина и аспарагина и появление значительных количеств р-аланина, который отсутствует в растениях с нормальной обеспеченностью цинком. В растениях с цинковой недостаточностью не было также цитруллина и этаноламина, присут- [c.240]

    На следующей стадии (стадия г) пептидная цепь переносится к. аминогруппе аминоацил-тРНК, занимающей А-участок, путем простой реакции замещения. Однако на. деле эта реакция протекает сложнее, чем это показано на рисунке. Она сопровождается расщеплением связанного GTP и освобождением Pi и комплекса Ти—GTP. Последний, как показано на рисунке, взаимодействует с Ts при этом вновь образуется димер Tu-Ts и освобождается GDP. Таким образом, суммарная реакция состоит в расщеплении GTP, сопряженном с синтезом пептидной связи. Химия реакции не требует гидролиза GTP. Мы, однако, ле знаем, насколько близко друг к другу располагаются концы двух соседних молекул тРНК. Расстояние между ними может быть достаточно большим. Белки L7 и L12 содержат необычайно много аланина и характеризуются высоким относительным содержанием а-спи-ральных участков. В этом отношении они напоминают мышечный белок миозин. В связи с этим было высказано предположение, что эти белки служат частью мини-мышцы , которая, используя энергию, освобождающуюся при гидролизе GTP, перемещает определенные участки рнбосомного комплекса, сближая между собой аминогруппу и пептидильную группу в пептидилтрансферазной реакции. [c.235]

    Триптофан — р-индолил-аланин — относится к числу незаменимых аминокислот. Хотя содержание этого вещества в белках невелико, но отсутствие его в пище приводит к гибели животного. [c.474]

    Определения аминокислот белков показали, что отдельные белки резко различаются по составу аминокислот. В некоторых белках отдельные аминокислоты могут отсутствовать или находиться в ничтожном количестве, а других может быть очень много. Например, зеин семян кукурузы не содержит лизина и триптофана, в то же время в нем много глутаминовой кислоты, лейцина, пролина и аланина. В глиадине пшеницы количество глутаминовой кислоты и амидов достигает почти половины общего содержания аминокислот в белке, в белках клубней картофеля много лизина, а в белках листьев ячменя очень мало цистина и т. д. [c.218]

    Другой метод, основанный на использовании безводной трифторуксусной кислоты [100], которая очень хорошо растворяет белки [173], успешно применялся для циклизации (5 мин при 0°) ФТК-производных при последовательном расщеплении в пепсине участка Н.Илей.Глу.Асп.Глу— [90]. Этот метод можно применять также для обработки ФТК-производных других белков. Вследствие быстрого образования промежуточного реакционноспособного тиазолинона (см. схему на стр. 239), по-видимому, это соединение лучше экстрагировать после кратковременного проведения реакции и завершить циклизацию в Зн. НС1, которая не разрушает ФТГ-производных серина и треонина. Представляет интерес тот факт, что очень низкие выходы, полученные Шефердом и сотр. [284] при тщательном изучении расщепления пептидов из кортикотропина, обусловлены потерями (50—70%) на стадии циклизаций в среде ледяная уксусная кислота — НС1 при 75—80° в течение 15 мин. Поскольку тиазолинон образуется быстро и имеет высокую реакционную способность, подобные условия циклизации являются, по-видимому, рлишком жесткими. На основании экспериментальных результатов этих авторов можно предположить, что критическая фаза разложения наблюдается во время расщепления и циклизации или одного из этих процессов, так как в более мягких условиях выход аминокислот при регенерации из ФТК-пептидов оказался ниже, чем выход аминокислоты из ФТГ-производного аланина в аналогичных условиях. Этим можно объяснить, почему некоторые исследователи [108, 151, 242] предпочитают пользоваться методом вычитания, согласно которому N-концевая аминокислота обнаруживается по ее исчезновению. Несмотря на низкие выходы и случайное расщепление связей, Шеферду и сотр. [284] удалось обнаружить N-концевой остаток, так как его количество обычно в 5—10 раз превышает содержание других аминокислот а реакционной смеси. Однако в случае неустойчивой, неэкстрагируемой или встречающейся в пеп  [c.244]


    В боковой цепи аланина находится одна метильная группа. Это небольшой неполярный остаток, не имеющий какой-либо особой предрасположенности находиться внутри или на поверхности белка. Ala — самая распространенная аминокислота, по-видимэму, из-за ее простоты и доступности. Проще можно получить только Gly. Однако содержание Gly в цепи ограниченно его избыток привел бы к чрезмерной лабильности основной цепи. [c.20]

    Р-Структура может образоваться только при наличии в составе полипептида соответствующих аминокислот, расположенных в определенной последовательности. Необходимо, в частности, чтобы К-группы аминокислотных остатков имели сравнительно небольшие размеры. Так, в фиброине шелка и других р-керати-нах, например в белке паутины, наблюдается очень высокое содержание глицина и аланина-аминокислот с наименьшими по размеру К-группами. Примечательно, что в фиброине шелка каждой второй аминокислотой является глицин. [c.175]

    Коллагены содержат около 35% остатков глицина и примерно 11% остатков аланина (необьмно большие количества этих аминокислот). Еще более характерным отличительным признаком коллагена служит высокое содержание пролина и 4-гидроксипролина (рис. 7-13)-аминокислоты, которая, за исключением коллагена и эластина, редко встречается в белках. В сумме на долю пролина и ги-дроксипролина приходится около 21% всех аминокислотных остатков коллагена. Необьмный аминокислотный состав коллагена с значительным преобладанием четырех аминокислот над всеми другими определяет относительно низкую питательную ценность желатины как пищевого белка. Самые лучшие пищевые белки содержат все 20 аминокислот, и в частности 10 аминокислот, образующих группу так называемых незаменимых аминокислот, которые должны [c.177]

    Изучены биохимические свойства многочисленных низкомолекулярных альбуминов, встречающихся в мышцах рыб [283, 284]. Хотя физиологическая функция этих белков молекулярного веса около 11 ООО неизвестна, они отличаются необычным аминокислотным составом — содержанием около 10% фенилаланина, 20% аланина и малым содержанием или отсутствием триптофана, тирозина, метионина, гистидина, цистеина и аргинина. Кроме того, они характеризуются высоким сродством к кальцию. Все это наводит на мысль, что альбумин карпа, возможно, аналогичен тро-понину А млекопитающих и мышц птиц [285] и, следовательно, может служить посредником участия кальция в мышечном сокращении [286]. [c.113]

    Укажем только на следующее для точного определения аминокислотного состава белка его нужно подвергнуть гидролизу (в вакуумированной запаянной ампуле с 6н. НС1 при температуре 110°) в течение 22 и 70 час [26]. При этом для глицина, аланина, валина, лейцина, изолейцина, метионина (с внесением поправки на 10%-е расщепление при хроматографии), фенилаланина, гистидина и лизина нужно использовать полученное при анализе содержание аминокислоты (в 22- или 70-часовом опыте). В то время как для аспарагиновой и глутаминовой кислоты, серина, треонина, пролина, тирозина и аргинина, которые частично разрушаются при гидролизе (по реакции 1-го порядка), их содержание рассчитывается путем экстраполяции на нулевое время по формуле [c.149]

    Л. разного нроисхоягдения, обладая биологич. активностью одного и того же характера, отличаются несколько по интенсивности действия, атакже имеют небольшие различия в аминокислотном составе. Л. куриных яиц относится к числу наиболее изученных белков, и все приводимые здесь данные относятся к Л. этого происхождения. Мол. в. ок. 14 800, содержание азота 18,7%. Молекула Л. состоит из одной полипептидной цепи, включающей 127—130 аминокислотных остатков, из них И глицина, 10 аланина, [c.483]

    Одновременно со снижением содержания азота при повышенных концентрациях НАМ наблюдается изменение аминокислотного состава белка. Количественное содержание лизина, гистидина, аланина, валина, метионина, изолейцина, тирозина и феналалани-на не изменялось под влиянием химических мутагенов. Содержание аспарагиновой и глутаминовой кислот достоверно снижалось во все годы исследований (таблица). Поскольку аспарагиновая и глутаминовая кислоты являются предшественниками других аминокислот, то снижение их содержания существенно сказывалось на синтезе белка. Содержание треонина, серина, пролина [c.84]

    Среди индивидуальных органических соединений определены органические кислоты (муравьиная, уксусная, фумаровая, щавелевая, молочная, бензойная и др.), жиры, белки, аминокислоты (глицин, аланин, гистидин, аргинин, фенилаланин, тирозин, аспарагиновая и глутаминовая кислоты и др.), углеводы (полисахариды, в частности, полиуроновые кислоты и их производные — полисахара), полифенолы, альдегиды, сложные эфиры, воска, смолы, лигнин и др. Многие из них растворимы в воде и могут образовывать комплексные соединения с ионами металлов. Способность гумусовых веществ к образованию внутрикомплексных соединений (хела-тов) с рядом катионов объясняется наличием в структуре гумуса гидрофильных групп. Наивысшей склонностью к образованию же-лезо-гумусовых комплексов типа хелатов обладают фульвокислоты и близкие к ним по природе гуминовые кислоты иэ. сильноподзолистой почвы, характеризующиеся высоким содержанием гидрофильных групп. [c.25]

    В настоящее время в результате применения новых методов исследования установлено, что в состав белковых молекул входят следующие аминокислоты глицин, аланин, валин, лейцин, изолейцин, серин, треонин, цистин, цистеин, метионин, аспарагиновая кислота, глутаминовая кислота, аргинин, лизин, оксилизин, фенилаланин, тирозин, пролин, оксипролин, гистидин и триптофан. Ввиду того что количество азота этих аминокислот составляет в некоторых исследованных белках более 99 % общего содержания азота, нет оснований предполагать наличие в этих белках заметных количеств каких-нибудь других еще не известных соединений. Эти данные, однако, нельзя обобщать и переносить на другие белки. Об этом свидетельствует хотя бы нахождение таких соединений, как аминоэтанол — в гидролизате грамицидина (см. гл. XV) — и диодтирозин и дибромтирозин — в гидролизате кораллов [59] и спонгина [60]. [c.30]

    У зерна пшеницы белок в эндосперме подразделяют на пять групп [63] альбумины, глобулины, глиадины, глютенины и остаточный белок. Клейковина, важная для процесса хлебопечения, представляет собой обычно смесь глютенинов, глиадинов и остаточного белка. При производстве спирта из зерна эта белковая фракция восстанавливается и в качестве побочного продукта поставляется на предприятия пищевой промышленности. Важные белки эндосперма кукурузы, зеины, родственны глиадинам пшеницы и гордеинам ячменя (табл. 1.1) [82]. Зеины представляют собой небольшие по размеру молекулы с высоким содержанием глютамина, лейцина, аланина и пролина, но с низким содержанием лизина. Некоторые зеины богаты также метионином. Основным резервным белком риса являются глютелины (около 80%), сходные по своим характеристикам с глютенинами пшеницы. В каждой зерновой культуре от растворимости накапливаемых белков зависит количество азотистых веществ в водном экстракте, доступных для метаболизма дрожжей. Хотя большинство зерновых культур, за исключением ячменя, для солодоращения не используются, в производстве спирта из зерна и большинства сортов пива для инициации процесса желатинизации крахмала кукуруза, рис и пшеница подвергаются ферментативной и последующей тепловой обработке. [c.22]

    Натуральный шелк получается из коконной пряжи личинок тутового шелкопряда (Bombyx mori). Шелковое волокно представляет собой двойную нить из высокоориентированного фибриллярного белка фиброина, скрепленную веществом нефибриллярной структуры — серицином. Оба белка имеют различный аминокислотный состав. Для фиброина характерно высокое содержание глицина, аланина, серина для серици-на — наличие больших количеств серина, глицина, аспарагиновой кислоты. [c.164]

    Изучение индивидуальных аминокислот позволило выявить характер их накопления в растении. Так, для всех видов преобладающими свободными аминокислотами являются пролин, аланин и аспарагин, на которые, приходится 40—60% от всей суммы свободных аминокислот. Кроме того, каждый вид имеет свои особенности в содержании тех или иных аминокислот. Например, у копеечника забытого метионин, валин, фенилаланин составляют 10—15%, у к. Гмелина, к. родственного, к. южносибирского глутаминовая и аспарагиновая кислоты достигают 15—20% от общего количества свободных аминокислот. Из аминокислот белка в значительных количествах, как и в свободном состоянии, содержатся аспарагиновая и глутаминовая кислоты, пролин, фенилаланин, аланин, метионин, валин. При этом у копеечника забытого и к. южносибирского выявлено большое количество глутаминовой кислоты и фенилаланина—до 25% от всей суммы аминокислот белка, у к. родственного, к. Гмелина и к. ферганского— до 23% пролина и глутаминовой кислоты. [c.55]

    В динамике накопления отдельных аминокислот у разных видов остролодочников наблюдаются следующие тенденции. Содержание свободных аминокисло 1 снижается от фазы бутонизации к фазе плодоношения. Особенно ярко это проявляется на содержании серина, глицина, глутаминовой кислоты, аланина, пролина, тирозина. Исключение составляет цистин, количество которого возрастает от начальных фаз развития к конечным (см. табл. 5). Рассматривая аминокислоты, входящие в состав белка, следует отметить следующее. Их качественный состав не зависит ни от вида, нн от органа, ни от фазы развития, ни от места произрастания. В условиях Новосибирска, как и в Юго-Восточном Алтае, в белках были обнаружены следующие аминокислоты цистин, гистидин, лизин, аргинин, аспарагиновая кислота, серин, глицин, глутаминовая кислота, треонин, аланин, пролин, тирозин, триптофан, метионин- -валин, фенилаланин, лейцин+изолейцин, что свидетельствует о постоянстве качественного состава аминокислот белка у представителей рода остролодочник. [c.73]

    В процессе вегетации содержание аминокислот белка листьев снижается от фазы бутонизации к фазе плодоношения, особенно сильное уменьшение наблюдается от фазы цветения до фазы созревания. Такая закономерность наблюдается как в изменении содержания суммы аминокислот, так и количества аспарагиновой кислоты, глицина, глутаминовой кислоты, аланина, пролина, тирозина, лейцинов (табл. 7). [c.75]

    Способность к автолизу определяется количеством растворимого азота, высвобождаемым известной массой дрожжей в течение 48 ч в водно-спиртовой раствор со значением pH 3,5 и температурой 37 °С. Автолиз представляет собой потерю сухой массы дрожжей с уменьшением содержания в этой сухой массе белков и нуклеиновых кислот при наличии внутриклеточной протеолитической активности [31]. Уменьшение содержания аминокислот в клеточных стенках связано с потерей глюкозамина и фосфата под воздействием глюканазы снижается и содержание глюканов в клеточной стенке, но толщина клеточных стенок остается той же, только они становятся более пористыми и рыхлыми [12]. При нагревании до 42 °С в течение 3-72 ч в винах, изготовляемых промышленным способом, возрастает содержание пептидов и аминокислот. Это явление связано с экскрецией и отличается от такого же явления вследствие выдерживания вина на дрожжевом осадке [13]. В ходе вторичного брожения или непосредственно после его завершения содержание растворимого азота (в частности, аминокислот) существенно возрастает и не может служить надежным индикатором автолитической активности. В фазе реактивации, соответствующей перестройке внутриклеточной структуры, происходит высвобождение (особенно из вакуолей) лити-ческих ферментов [31], и при этом из дрожжей высвобождается 30% азота, четверть которого представлена глутаминовой кислотой и аланином [36]. [c.193]


Смотреть страницы где упоминается термин Аланин содержание в белках: [c.247]    [c.54]    [c.446]    [c.293]    [c.27]    [c.655]    [c.588]    [c.33]    [c.64]    [c.73]    [c.23]    [c.23]    [c.215]    [c.481]    [c.307]   
Химия природных соединений (1960) -- [ c.436 , c.483 ]

Белки Том 1 (1956) -- [ c.239 , c.242 , c.244 , c.250 , c.254 , c.258 , c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Аланин

Белки содержание

Белки тканей, содержание аланина и глицина

Крупный рогатый скот содержание аланина и глицина в белках

содержание аланина



© 2025 chem21.info Реклама на сайте