Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальные исследования излучения пламен

    В большинстве исследований турбулентных пламен рассматривались пламена, развивающиеся вдоль вертикальных или наклонных поверхностей, и осесимметричные пламена, причем всегда в условиях неподвижной среды. Проведено много экспериментальных исследований, в ходе которых измерялись скорости горения, средние скорости и температуры. В качестве примеров можно привести работы [8, 23, 91]. Результаты расчетов, проведенных в этих работах интегральным методом, удовлетворительно согласовались с данными измерения скорости горения и плотности теплового потока на стенке в области факела. В работах [49, 90] применялась (й — е — g-)-модель турбулентности (см. гл. 11). Решение, полученное в первой из них, позволяет довольно точно определить структуру пламени и скорости горения. Однако остаются неопределенности при расчете как характеристик турбулентности, так и теплового излучения. [c.414]


    Во второй половине XIX в. химики начали устанавливать связь между свойствами веществ и предполагаемым строением их молекул, т. е. вполне определенным взаимным расположением атомов. Точная информация об атомном строении молекул и кристаллов многих веществ была получена в сравнительно недавнее время, примерно после 1913 г. Физики разработали много эффективных методов исследования строения веществ. Один из этих методов основан на интерпретации спектров веществ (рис. 19.6). Пламя, содержащее, например, пары воды, испускает свет, характерный для молекул воды такое излучение называют спектром водяного пара. Линии в спектре воды были определены экспериментально и интерпретированы было установлено, что оба атома Н в молекуле воды находятся на расстоянии 97 пм от атома кислорода. Было показано, кроме того, что два атома водорода не находятся на одной прямой с атомом кислорода молекула воды изогнута, причем угол, образуемый прямыми, соединяющими три атома, равен 105°. Спектроскопическими методами удалось определить как расстояние между атомами, так и углы между ними для многих простых молекул. [c.30]

    Абсорбционные линии элементов, имеющих многолинейчатые спектры, не проявляются столь отчетливо, как абсорбционные линии щелочных и щелочноземельных элементов, В связи с этим ряд работ посвящен исследованию атомных спектров поглошения элементов, причем в большей части работ эта задача решалась экспериментально путем фотографирования либо спектров элементов, возбуждаемых в полом катоде (Ре, Мп [7] N1, Со [103] Мо [11]), либо абсорбционных спектров элементов, полученных пропусканием через пламя света от источника сплошного излучения Ве, Mg, Са, Сг, 1п, В и др. [38] НЬ, Т1, V и др. [39]. [c.43]

    Опытные данные о светящемся пламени в промышленных топках показывают, что энергия излучения от сажи часто бывает больше, чем от несветящихся газов. Лент делал пламя доменных газов практически черным, добавляя для образования сажи бензин. Хеслам и Байер 2 обнаружили, что светящееся ацетиленовое пламя излучает примерно в 4 раза больше тепла, чем несветящееся, хотя размеры исследованного ими пламени не позволили достигнуть полной черноты. Шерман произвел измерения излучательной способности светящегося газового пламени в экспериментальной топке. [c.245]

    При окислении многих углеводородов различного строения, в том числе алканов вплоть до пропана и этана, наблюдали возникновение периодических и критических явлений, сопровождающихся резким повышением скорости реакции и вспышками светового излучения, за которыми следовало столь же резкое падение скорости окисления, причем задолго до израсходования реагентов. Поскольку разогрев смеси в таких вспышках, как правило, не превышал нескольких десятков градусов, они получили название холодных пламен [20, 105, 106]. Возможность возникновения холодных пламен при окислении метана оставалась неясной. В подавляющем большинстве исследований они не наблюдались. Однако авторы ряда работ сталкивались с явлениями, которые могли быть истолкованы как холоднопламенные. Такие ситуации возникали и при окислении метана в метанол при высоком давлении 23, 42, 45]. Но только в работах [107, 108], проведенных при атмосферном давлении, были получены достаточно убедительные экспериментальные доказательства этого явления. Недавно оно получило новое подтверждение [109] холодные пламена были обнаружены в смеси 2СН4 + О2 при давлениях 650-740 мм рт.ст. и температурах около 500°С. На кривой зависимости температуры реакционной смеси от времени наблюдали два максимума, причем величина разогрева в первом достигала 100-120°С. В работе [ПО] была обнаружена область отрицательного температурного коэффициента скорости реакции окисления метана. [c.147]



Смотреть страницы где упоминается термин Экспериментальные исследования излучения пламен: [c.11]    [c.147]    [c.197]   
Смотреть главы в:

Горение пламя и взрывы в газах -> Экспериментальные исследования излучения пламен




ПОИСК







© 2025 chem21.info Реклама на сайте