Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочноземельные элементы

Таблица 29. Физические свойства щелочных н щелочноземельных элементов Таблица 29. <a href="/info/1186900">Физические свойства щелочных</a> н щелочноземельных элементов

    К а-элементам относятся водород, гелий, щелочные и щелочноземельные элементы, а также бериллий и магний. Водород и гелий существенно отличаются по своим физическим и химическим свойствам друг от друга и от остальных з-элементов. Это связано с резким отличием электронного строения их атомов от электронного строения атомов остальных -элементов. Свойства водорода удобнее обсуждать при изучении химии р-элементов УПА-подгруппы, а гелия [c.379]

    Каковы характерные свойства следующих семейств элементов галогенов. щелочных металлов, благородных газов, щелочноземельных элементов  [c.324]

    Постоянную степень окисления имеют щелочные элементы (+1), бериллий, магний, щелочноземельные элементы (+2), фтор (-1). Д.ая водорода в большинстве соединений характерна степень окисления - -1, а в его соединениях с з-элементами и в некоторых других соединениях она равна -1. Степень окисления кислорода, как правило, равна -2 к важнейшим исключениям относятся пероксидные соединения, где она равна —, и фторид кислорода ОГг, в котором степень окисления кислорода равна -Ь2. [c.261]

    Рассуждая таким образом, можно сказать, что щелочноземельные элементы (магний, кальций, стронций и барий) похожи друг на друга также по этой причине у каждого из них на внешней оболочке по два электрона. На внешних оболочках атомов галогенов (фтора, хлора, брома и иода) по семь электронов, а на внешних оболочках инертных газов (неона, аргона, криптона и ксенона)— по восемь. [c.158]

    Магнитные свойства. По отношению к магнитному полю все металлы делятся на три группы диамагнитные, парамагнитные и ферромагнитные. К диамагнитным веществам (обладающим отрицательной восприимчивостью к магнитному полю и оказывающим сопротивление силовым его линиям) относятся часть элементов I (Си, Ag, Ли), П группы (Ве, Zn, Сс1, Hg), П1 (Са, 1п, Т1) и IV группы (Се, Зп, РЬ) периодической системы. Металлы щелочных, щелочноземельных элементов, а также большинства -элементов хорошо проводят силовые линии магнитного поля, обладают положительной магнитной восприимчивостью. Они являются парамагнитными веществами и намагничиваются параллельно силовым линиям внешнего магнитного поля. Очень высокой магнитной восприимчивостью обладают Ге, Со, N1, Ос1, Ву. Они являются ферромагнетиками. Ферромагнетики характеризуются температурой, выше которой ферромагнитные свойства металла переходят в парамагнитные. Эта температура называется температурой Кюри. Для железа, кобальта и никеля эта температура составляет 768, 1075 и 362 °С, соответственно. [c.324]


    Для некоторых групп химических элементов применяют групповые названия благородные газы, галогены, халькогены, щелочные элементы, щелочноземельные элементы и т. д. [c.95]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    Отличие строения атома бериллия от строения атомов магния и щелочноземельных элементов сказывается и на свойствах его соединений. Так, Ве(0Н)2—единственное в подгруппе оспование, обладающее амфотерными свойствами (см. ниже). Кроме того, для щелочноземельных металлов и магния характерно образование ионных соединений, тогда как атомы бериллия обычно связаны с атомами других элементов скорее ковалентной связью, чем ионной. [c.610]

    При нерегонке нефти щелочные и щелочноземельные элементы распределяются практически по всем фракциям. Их содержание, как правило, возрастает с увеличением температуры кипения фракции [786]. [c.171]

    Утверждены некоторые групповые названия элементов. Так, элементы Не, Ые, Аг, Кг, Хе, Кп принято называть благородные газы элементы Р, С1, Вг, I, А1 — галогены элементы О, 5, Зе,, Те, Ро — халькогены элементы Ыа, К, РЬ, Сз, Рг — щелочные элементы элементы Са, 5г, Ва, Ка — щелочноземельные элементы элементы с порядковыми номерами 57—71 (от Ьа до-Ьи включительно) — лантаноиды (до 1965 г. — лантаниды) и элементы 89—103 (от Ас до Ьг включительно) — актиноиды (до-1965 г. — актиниды). Элементы, у атомов которых заполняется -подуровень, называются -элементами (переходными элементами). Аналогично применяют названия -элементы, р-элемен-ты, /-элементы. Все элементы принято условно разделять на металлы и неметаллы (термин металлоиды запрещен). [c.22]

    Коэффициенты распределения щелочноземельных элементов [c.190]

    Строят графики зависимости Ai, А и Аз от Х1Д изменяя значения Д. По полученным градуировочным графикам и рассчитанным значениям Ai, А2 и Аз находят х/Д и, зная значения Д, находят X, Этот вариант метода добавок позволяет учитывать изложение излучения мешающих спектральных линий или молекулярных полос, а также гасящее влияние анионов на эмиссию щелочных и щелочноземельных элементов, даже в случае образования термостойких соединений. [c.44]

    В соответствии с принятой классификацией к атомам можно отнести не все атомные системы, а только те, электронные конфигурации которых не содержат неспаренных электронов (например, атомы щелочноземельных элементов, благородных газов и др.). Все остальные изолированные атомы представляют собой, как правило, атом- [c.7]

    Зольность антрацитов составляет 4-6 мас.%. В составе золы содержатся оксиды кремния, алюминия, железа и незначительное количество щелочных и щелочноземельных элементов. [c.11]

    Таким образом, расплавы солей, обладающих в твердом виде ионной связью, являются ионизированными жидкостями, ионизация которых не связана с силами гидратации или сольватации. Такие наиболее важные для электролиза расплавов соли, как га-логениды щелочных и щелочноземельных элементов, в твердом виде обладают ионной решеткой галогениды кремния, титана, алюминия, сурьмы — молекулярной галогениды кадмия, свинца и других металлов — смешанной. Соответствующие связи характерны и для расплавов при температурах электролиза. [c.466]

    Смеси неорганических соединений разделяют на таких адсорбентах, как силикагель, целлюлоза, оксид алюминия или крахмал. В таком случае растворителями, как и при хроматографировании органических соединений, служат системы из органических растворителей, иногда с добавкой растворов кислот или солей. Так, катионы щелочных металлов разделяют на силикагеле, причем растворителем служит смесь этанола и ледяной уксусной кислоты (100 0,5) смесь катионов щелочноземельных элементов разде- [c.133]

    Щелочные и щелочноземельные элементы Си +, Со2+, N 2+ [c.238]

    Определению циркония не мешают Аз, Ве, В), С(3, Сг(П1), Со, Си (II), Ре (И), Ре (III), РЬ, Мд, Мп, Мо (VI), N1, 8е(1У), Ag, Те (IV), Т1 (I), П, V (V), XV (VI), 2п, щелочноземельные элементы при их содержании 1—2 мг в 25 мл, Р1, Р(1, 1г не мешают в количестве до [c.95]

    Соли щелочноземельных элементов (Са, Mg, Ва) и некоторых тяжелых металлов (например, РЬ —так называемые металлические [c.156]


    К веществам, вызывающим горение при воздействии на них воды, относятся металлические натрии и калий, карбид кальция, карбиды щелочных металлов, фосфористые кальций и натрий, гидраты щелочных и щелочноземельных элементов и др. Попадание на такие вещества воды крайне опасно. Например, карбид кальция при действии даже незначительных количеств влаги разлагается с выделением ацетилена. Реакция экзотермическая и протекает с больтинм выделсипсм тепла (выше 500—700 °С), что вызывает самовоспламсиепие образующегося ацетилена и может привести к взрыву. Щелочные металлы ири взаимодействии с водой окисляются, выделяя большое количество тепла, что вызывает самовоспламенение образующегося при этом водорода. В мелко раздробленном виде металлические калий и натрий воспламеняются на влажном воздухе. [c.53]

    Легкость попадания в организм радиоизотопа определяется тем, в какой химической форме он находится. От этого же зависит, насколько долго радиоизотоп удерживается внутри организма и в каких его органах. Наглядным примером могут служить криптон-85 и стронций-90. Криптон-85 образуется при адерном делении и выделяется в атмосферу в процессе использования ядерного топлива. Поскольку криптон химически инертен, до сих пор не разработан простой способ его химического обезвреживания. Попавший в атмосферу криптон-85 оказывает воздействие на кожу и легкие людей и животных. Однако, не обладая реакционной способностью, он не может переходить в другие органы организма или накапливаться там. Стронций-90 также образуется при ядерном делении. Поскольку стронций является щелочноземельным элементом, он способен замещать кальций в его соединениях. Поэтому стронций может проникать в костные ткани, где его из.пучение способно вызывать раковые заболевания или лейкемию. [c.263]

    Окислы щелочных и щелочноземельных элементов обладают ярко выраженной основной природой — они [c.113]

    Отличие строения атома бериллия от строения атома магния и щелочноземельных элементов сказывается и на свойствах его соединений. Так, Ве(0Н)2 [c.389]

    Хорощо зарекомендовали себя методы связывания примесей специально подобранными реагентами в такие химические соединения, которые сравнительно легко тем или иным способом (фильтрование, центрифугирование, отгонка и т. д.) отделяются от основного вещества. Так, действуя на водные растворы хлоридов и сульфатов некоторых щелочных и щелочноземельных элементов диэтилдитиокарбаминатом натрия (метод избирательного комплексообразования), можно перевести содержащиеся в этих солях примеси железа, кобальта, меди и некоторых других переходных металлов в малорастворимые соединения типа хелатов по схеме  [c.11]

    Примечательно, что в присутствии кислот ускоряется распад ROOH и на свободные радикалы [259, 260]. Катализаторами гетеролитического и сопутствующего ему гомолитического распада могут служить также кислоты Льюиса [261] и ионы щелочных и щелочноземельных элементов [262]. [c.125]

    Элементы этих групп достаточно широко распространены в природе. Практически все представители их найдены в нефтях, причем содержание N3, К, Са, Мд достаточно высоко и достигает порядка 10- —10 % [923], а в золе нефтей на эти элементы приходится до 15—20% веса. Несхмотря на их широкую представительность, сведений о содержащих эти элементы органических соединениях очень мало. Это связано с тем, что ще-иочными и щелочноземельными элементами представлен основной катионный состав пластовых вод, их ионы с трудом отмываются от нефти и могут находиться в ионном равновесии с входящими в нефть веществами кислотной природы. Большинство исследователей приходят к выводу, что щелочные и щелочноземельные металлы присутствуют в нефтях в форме солей нефтяных кислот, фенолятов и тиофеноля-тов как в виде простых монофункциональных соединений, так и в виде составных частей крупных иолифуикциональных молекулярных агрегатов, смол и асфальтенов. Найдено, например, что 92% их в нефти С-1 (Калифорния) присутствует в форме легко гидролизуемых нефтерастворимых соединений [76]. [c.171]

    Атомные и ионные радиусы элементов главной подгруппы II группы значительно меньше радиусов соседних щелочных металлов. Это связано с большим зарядом и по.пным заполнением внешних электронных 8-слоев щелочноземельных металлов. Сравнительные характеристики щелочных и щелочноземельных элементов даны в таблице 29. Физические свойства щелочноземельных металлов приведены а таблице 31. [c.146]

    Отбеливающие глины по сравнению с другими адсорбентами являются наиболее дешевыми. Адсорбционные свойства имеют естественные глины различного химического состава (табл. 3.4), представляющие собой гидросиликаты алюминия с небольшими п римеСями окисей и закисей щелочноземельных элементов и щёлочей. Присутствующая в глинах связанная и гигроскопическая вода повышает их активность. Адсорбционные свойства глин зависят от их пористости и в меньшей степени от химического состава. [c.60]

    Помехи, связанные с процессами в пламени реакции ионизации или ассоциации (образование монооксидов и моногидроксидов, например, щелочноземельных элементов с константами диссоциации более 100 ккал/моль). [c.13]

    Прямым способом по пламенным эмиссионным спектрам определяют 40 элементов по атомным линиям и молекулярным полосам. Применение косвенных методов позволяет расширить число определяемых элементов. Например, фосфор или алюминий можно определять по гашению излучения щелочноземельных элементов элементы I, И1, Vni групп — по атомным линиям магний, хром, палладий, родий, марганец, щелочноземельные элементы — по молекулярным спектрам монооксидов и моногидроксидов, а также ионов (стронций и барий), бор — по полосам BOj, РЗЭ — по спектрам монооксидов. [c.15]

    Применение маскирующих средств. Основанные на этом методы титрования исходят из того, что, например, один или группа металлов связываются в комплексы, более прочные чем с ЭДТА или осаждаются и т. п. Так, алюминий и титан мешают титрованию редкоземельных и щелочноземельных элементов. Однако А1 и Т1 можно-замаскировать, связав их в прочный комплекс с пирокатехином (чаще применяют сульфопроиз-водное пирокатехина — тайрон). Редкоземельные элементы, а также индий и свинец можно титровать в присутствии цинка, меди, кадмия, кобальта и др. металлов, если эти последние связать в прочные комплексы цианистым калием. Титрованию цинка, кадмия и др. мешает ртуть ее легко замаскировать йодидом. [c.432]

    Для обнаружения щелочноземельных элементов в остатке, полученном после сплавления с ЫагСОз, в части центрифугата проводят пробу на содержание ЗО42-. Положительный (эффект пробы указывает на присутствие сульфатов щелочноземельных металлов. (Отрицательный результат пробы на 504 не обязательно указывает на отсутствие щелочноземельных элементов в остатке.) В содовом расплаве кальций, содержащийся в силикате, может также образовать карбонат. [c.52]

    Если один из элементов — типичный металл, а другой — неметалл, то при достаточной разности в значениях электроотрицательности элементов можно говорить о наличии приближенно ионной связи. Обычно все характерные черты ионной связи проявляются на таких бинарных соединениях они имеют прочную ионную кристаллическую решетку, диэлектрики, хорошо растворяются в воде диссоциируют на ионы и присоединяют ее с образованием щелочей. К ним относятся галогениды и оксиды щелочных и щелочноземельных элементов KF, Na l, aF2, ВаО и др. [c.341]

    Нитриды s-элементов имеют преимущественно ионный характер химической связи (например, в соединении NasN), а нитриды р-элементов характеризуются ковалентной связью. Поэтому нитриды этих элементов по составу подчиняются правилу формальной валентности все валентности атомов одного элемента должны быть задействованы всеми валентностями атомов другого элемента. Нитриды щелочных и щелочноземельных элементов солеобразны и разлагаются водой (см. выше уравнение реакции для a3N2). [c.342]

    Соединения водорода. По значению своей электроотрицательности водород близок к фосфору (см. табл. 4.2). Поэтому следовало бы ожидать образования гидридов (соединений со степенью окисления водорода -1) многих металлов, кремния и бора. На самом деле известны солеобразные гидриды для щелочных и щелочноземельных элементов (твердые LiH, СаНг и др.), ковалентные (газообразные SiH4, ВгНе) и металлоподобные. В последнем случае еще не ясно, являются ли они индивидуальными соединениями d- и /-элементов с водородом, или это твердые растворы. [c.344]

    Входящие в состав главной подгруппы кальций, стронций и барий издавна получили название щелочноземельных элементов. Происхождение этого названия связано с тем, что гидроксиды кальция, стронция и бария, так же, как и гидроксиды натрия и калия, обладают щелочными свойствами, оксиды же этих элементов по их тугоплавкости сходны с оксидами алюминия и тяжелых металлов, носившими прежде общее название земель. Простые вещества щелочноземельных элементов — типичные металлы, поэтому их часто называют щелочноземельными металлами. При сжигании щелочноземельных металлов всегда получаются оксиды. Пероксиды, поскольку они вообще обраг1уются, гораздо менее стойки, чем пероксиды щелочных металлов. [c.388]


Смотреть страницы где упоминается термин Щелочноземельные элементы: [c.434]    [c.436]    [c.143]    [c.5]    [c.191]    [c.38]    [c.117]    [c.28]    [c.343]    [c.229]    [c.38]    [c.179]   
Смотреть главы в:

Практикум по неорганической химии -> Щелочноземельные элементы

Электромиграционный метод в физико-химических и радиохимических исследованиях -> Щелочноземельные элементы


Современная общая химия Том 3 (1975) -- [ c.3 , c.320 , c.322 ]

Аккумулятор знаний по химии (1977) -- [ c.147 ]

Неорганическая химия (1987) -- [ c.649 ]

Аккумулятор знаний по химии (1985) -- [ c.147 ]

Современная общая химия (1975) -- [ c.3 , c.320 , c.322 ]

Основы номенклатуры неорганических веществ (1983) -- [ c.11 ]

Справочник по общей и неорганической химии (1997) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Атомная орбиталь щелочноземельные элемент

Барин также Щелочноземельные элементы

ВТОРАЯ ГРУППА ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ. ЩЕЛОЧНОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ

Водород и гелий как прототипы химически активных и химически инертных элементов и как кайносимметричные типические представители гомологичных им по группе щелочных и щелочноземельных металлов

Испарение окислов щелочноземельных элементов и энергетические характеристики газообразных молекул

Коэффициенты распределения щелочноземельных элементов

Линии резонансные щелочноземельных элементо

Металлы щелочноземельные, см также элементы группы

Н. С. Вере ж ников а, Т. И. Берестнева. Разделение щелочноземельных элементов методом хроматографии на бумаге

Отделение элементов щелочноземельной группы друг от друга

Паули принцип щелочноземельные элементы

Периодическая щелочноземельных элементов

Разделение щелочноземельных элементов

Разделение щелочных и щелочноземельных элементов

Распространенность в природе и методы получения щелочноземельных элементов

Свойства s-элементов (щелочных и щелочноземельных металлов) и их соединений

Селен влияние щелочноземельных элементов, меди

Спектры атомов щелочноземельных элементов и других атомов и ионов с двумя валентными электронами

Теллур отделение от щелочноземельных элементов хроматографическое

Теллур отделение от щелочноземельных элементов, меди, железа

Теллур отделение от щелочноземельных элементов, меди, железа специфические реакции

Тема 9. Элементы II А подгруппы. Бериллий и щелочноземельные металлы

Физические свойства щелочноземельных элементов

Химические свойства щелочноземельных элементов

Щелочноземельные элементы и магний

Щелочноземельные элементы также Барий, Кальций, Радий

Щелочноземельных элементов молекулы

Щелочноземельных элементов молекулы дигалогениды, таблица валентных

Щелочноземельных элементов молекулы кристаллическая структура

Щелочноземельных элементов молекулы металлы

Щелочноземельных элементов молекулы орбитальные заселенности и энергии ионизации

Щелочноземельных элементов молекулы таблица значений

Щелочноземельных элементов молекулы теплота сублимации

Щелочноземельных элементов молекулы углов

Щелочные и щелочноземельные элементы

Электронные конфигурации атомов щелочноземельных элементов

Элементы ИА-группы — щелочноземельные элементы

Элементы главной подгруппы — щелочноземельные металлы

Элементы группы щелочноземельных металлов

Элементы переходные щелочноземельные

Энергетические характеристики газообразных окислов i щелочноземельных элементов

Ю р к о в а, М. М. С е н я в и н, К. М. О л ь ш а н о в а. Изучение механизма процесса хроматографического разделения смесей щелочноземельных элементов на анионитах



© 2025 chem21.info Реклама на сайте