Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источники излучения сплошного спектра

    Источники излучения сплошного спектра. При использовании в качестве источника излучения ламп с, полым катодом или высокочастотных безэлектродных ламп с парами металлов возникают затруднения, связанные с необходимостью в смене ламп при переходе от определяемого элемента к определению другого. В большинстве случаев лампы одноэлементны и исключают возможность одновременного определения нескольких элементов. Эти недостатки частично устраняют, применяя источник излучения с непрерывным спектром [30—32] и с фотографической регистрацией спектров поглощения. [c.249]


    Источниками излучения сплошного спектра для разных диапазонов длин волн являются [c.169]

    Источники излучения сплошного спектра  [c.154]

    Светящиеся тела, содержащие возбужденные частицы, испускают излучение. Возбуждение происходит или путем поглощения квантов света, или при столкновениях, т. е. за счет теплоты. Спектры испускания известны для атомов и сравнительно небольшого числа молекул, в основном двухатомных (более сложные разлагаются при высокой температуре). Молекулярные спектры изучают главным образом как спектры поглощения, когда излучение источника сплошного спектра (например, лампы накаливания) проходит через кювету, наполненную молекулярным газом. [c.145]

    Поскольку ширина спектральных линий, соответствующих электронным переходам в атомах, относительно мала (- 10-2 д ), необходимо применять спектральную аппаратуру, позволяющую выделять из сплошного спектра монохроматические составляющие с ширинами, равными (меньшими) ширинам атомных спектральных линий. Такая аппаратура хотя и вполне доступна, но относительно громоздка и, кроме того, обладает малой светосилой, что затрудняет регистрацию слабых сигналов. Поэтому атомно-абсорбционный метод анализа с применением источников излучения сплошного спектра не нашел широкого распространения. [c.35]

    Призма, линза и защитные пластинки изготовлены из кварцевого стекла с высоким пропусканием в ультрафиолетовой области спектра. Для обеспечения работы спектрофотометра в широком диапазоне спектра используют два фотоэлемента и два источника излучения сплошного спектра. Сурьмяно-цезиевый фотоэлемент с окном из кварцевого стекла применяется при измерениях в области излучения с Я= 186- 650 нм, кислородно-цезиевый фотоэлемент — для измерений в области с Л = 600- 1100 нм. Длина волны излучения, при которой следует переходить от одного фотоэлемента к другому, указывается в паспорте спектрофотометра. [c.35]

    Источники со сплошным спектром излучения [c.165]

    Источник лучистой энергии, дающий излучение сплошного спектра в пределах нужной спектральной области. Для ультрафиолетовой области (210—350 нм) применяется водородная или дейтериевая лампа. В ближней ультрафиолетовой, видимой, а также ближней инфракрасной областях спектра (350—1000 нм) источником лучистой энергии служит лампа накаливания  [c.653]

    При исследовании спектров молекул существенно, чтобы в процессе анализа молекулы не изменили своей структуры. Спектры двухатомных свободных молекул изучают как в излучении, так и в поглощении. Спектры более сложных молекул легче изучать в поглощении, не подвергая исследуемое вещество нагреванию. При абсорбционном анализе яркий пучок света от источника со сплошным спектром пропускают через исследуемое вещество. При этом часть световой энергии пучка будет поглощена электронами, атомами, ионами или молекулами вещества. В результате этого в сплошном спектре произойдут характерные изменения, появятся линии и полосы поглощения. Положение линий поглощения в спектре такое же, как и линий излучения этого вещества (если бы они были получены), поэтому по положению, строению и интенсивности линий поглощения можно узнать состав и строение исследуемого вещества. [c.13]


    Другая трудность заключается в создании источников, излучающих одновременно спектр нескольких элементов. Этот вопрос освещен автором, и здесь мы на нем останавливаться не будем. Следует лишь отметить, что для одновременного определения нескольких элементов возможно применение источника со сплошным спектром излучения. Чувствительность определения в этом случае снижается, поскольку ширина спектральной полосы, выделяемой монохроматором со средним разрешением, значительно больше [c.251]

    Излучение сплошного спектра может быть получено от источников, работающих как в импульсном, так и в непрерывном режиме. [c.107]

    Источники света. Для изучения полос поглощения необходим источник света со сплошным спектром излучения. Сплошным спектром—плавно меняющейся зависимостью энергии излучения от [c.67]

    Экспериментально это проявляется следующим образом. Если на молекулы направить свет от источника со сплошным спектром излучения, то в нем всегда найдется излучение с частотой, удовлетворяющей соотношению Д =Лу. Поэтому будет происходить поглощение света с частотами кол [c.9]

    ИЛИ непрерывный фон появляется в результате того, что свободные электроны, присутствующие в нагретом газе, пролетая мимо ионов, изменяют скорость своего движения, что приводит к излучению световой энергии. Электроны могут быть также захвачены положительно заряженными ионами. В результате этого ироцесса также излучается энергия. Энергия, излучаемая свободными электронами, может иметь всевозможные значения, так как в этом случае отсутствуют те дискретные квантовые уровни, которые характерны для атомной системы и определяют линейчатый характер ее спектров. Поэтому, наряду с линейчатыми и полосатыми спектрами, всегда существует непрерывный спектр, обязанный своим происхождением свободным электронам. Возможны и другие механизмы излучения сплошного спектра, например свечение накаленных частиц твердых тел, присутствующих в источнике (частицы электродов, пыли и т. п.). При спектральном анализе используются чаще всего атомные, а иногда молекулярные спектры. Сплошной спектр всегда является источником помех и по возможности ослабляется. [c.19]

    Атомно-абсорбционный спектрометр 1СВАНТ- 2А , однолучевой с пламенным атомизатором и корректором фона на основе дейтериевого источника излучения сплошного спектра. Реализованные методы анализа атомно-абсорбционный, атом-но-эмиссионный. [c.558]

    На граничной поверхности интенсивность излучения внешнего источника ( о) сплошного спектра задана. Требуется определить закон изменения интенсивности излучения по толщине слоя поглощающей среды. Принимается, что интенсивность излучения по отдельных длинам волн при прохождении в направлении I через слой поглощающей среды толщиной 1 уменьшается пропорционально этой интенсивности и бесконечно малому пути луча Ш  [c.421]

    Для получения свободных атомов анализируемое вещество наг -вают до высокой температуры в пламенах. Способы введения вещества в пламена и происходящие при этом процессы описаны в Методах эмиссионной фотометрии пламени . Помимо пламен для атомизации веществ в атомно-абсорбционном методе используют специальные печи-кюветы, в которые вводят небольшое количество пробы (чаще всего в виде капли раствора). При повышении температуры печи вещество испаряется и атомизируется. Происходящие при этом процессы аналогичны процессам в пламенах. В качестве источников излучения, ослабление интенсивности которого определяется, могут быть использованы, например, лампы накаливания или различного рода газоразрядные лампы, испускающие непрерывные (сплошные) спектры в широких спектральных областях. [c.35]

    В спектрофлуориметрах селекция монохроматических лучистых потоков осуществляется монохроматорами, а источником возбуждающего излучения служит ксеноновая дуговая лампа высокого давления, испускающая сплошной спектр в УФ-, видимой и ближней ИК-области. Спектрофлуориметры позволяют регистрировать как спектры флуоресценции, так и спектры ее возбуждения. Для получения спектра возбуждения вторичный монохроматор излучения настраивают на частоту (длину волны), соответствующую максимуму флуоресценции, а первичным меняют частоту (длину волны) возбуждающего излучения. Для получения спектров флуоресценции первичный монохроматор излучения настраивают на частоту (длину волны), соответствующую максимуму возбуждения, а вторичным меняют частоту (длину волны) флуоресценции. Существуют модели спектрофлуориметров, у которых первичным анализатором излучения является светофильтр. Такие приборы могут регистрировать лишь спектры флуоресценции. [c.512]

    Прибор имеет два источника излучения лампу накаливания, дающую сплошной спектр испускания в видимой области, и ртутно-кварцевую лампу, дающую линейчатый спектр испускания в УФ- и видимой областях спектра. [c.74]

    Спектрофотометры СФ-4, СФ-4А, СФ-16 и СФ-26 имеют кварцевую оптику, что позволяет проводить измерения помимо видимой и ближней ИК-областей также в УФ-области спектра. В качестве источников излучений в них могут быть использованы три лампы со сплошным излучением водородная лампа для работы в УФ-области (200— 350 нм), вольфрамовая лампа для работы в видимой и ИК-областях и дейтериевая лампа, которая имеется только в спектрофотометрах СФ-16 и СФ-26 и позволяет проводить измерения в области 185— 200 нм, но для этого требуется полная эвакуация прибора или вытеснение воздуха азотом на всем оптическом пути. Ртутно-гелиевая лампа, имеющаяся в комплекте каждого из этих приборов, используется для проверки градуировки шкалы длин волн, так как она дает линейчатый спектр излучения. [c.79]


    Электроразрядные источники излучения— лампы, наполненные парами / металлов или газами, излучающими в электрическом разряде, могут иметь как сплошной, так и дискретный спектр излучения, [c.54]

    Каждый источник дает сплошное излучение в определенной области спектра, за пределами которой интенсивность света очень мала. Поэтому источники сплошного излучения разделяются по областям спектра. [c.298]

    Абсорбционная спектрофотометрия изучает изменение интенсивности электромагнитного излучения различной длины волны, вызванное взаимодействием излучения с веществом. Если среда, через которую проходит излучение от источника сплошного спектра прозрачна для излучения, то изменяется только скорость распространения излучения, которая становится меньше, чем в вакууме. Количественно уменьшение скорости выражается через показатель преломления п — с/о, где с и у — скорости распространения электромагнитного излучения в вакууме и в данной среде. Спектр поглощения такой прозрачной среды представляет собой непрерывную полосу. Если среда поглощает излучение, то наблюдаемый спектр содержит одну или несколько полос поглощения. Их появление обусловлено избирательным поглощением, т. е. заметным уменьшением интенсивности излучения на некоторых длинах волн. [c.643]

    При работе в УФ-области спектра в качестве таких источников применяют водородную и дейтериевую лампы, которые дают сплошной спектр излучения в этой области и пригодны для измерений в области 200—350 нм. Кроме того, дейтериевая лампа обеспечивает работу также в УФ вакуумной области. Ртутная лампа также дает излучения в УФ-области, но ее спектр- имеет линейчатый характер, что позволяет проводить измерения только при определенных Длинах волн, соответствующих линиям эмиссионного спектра ртути. Иногда это при измерении затрудняет выбор оптимальной длины волны. Тем не менее эта лампа обеспечивает определенные преимущества при работе на фотоэлектроколориметрах, в которых монохроматорами служат светофильтры. [c.234]

    При работе в видимой и ближней ИК-областях спектра источником излучений служит обычная вольфрамовая лампа накаливания, дающая сплошной спектр. [c.234]

    Явление теплового излучения-это процесс распространения энергии с помощью электромагнитных колебаний. Источником этих колебаний являются заряженные частицы - электроны и ионы, входящие в состав излучающего вещества. Твердые тела и жидкости излучают волны всех длин, т. е. дают сплошной спектр излучения. При переносе теплоты излучением тепловая энергия вначале превращается в лучистую, а затем обратно встречая на своем пути какое-либо тело, лучистая превращается в тепловую. [c.263]

    Как видно из рис. 4.1, поглощение N1- и Со-фильтров почти одинаково для всех волн, кроме заключенных в интервале между 1,487 и 1,607 А, где Ni-фильтp поглощает слабее, чем Со-фильтр. Если источником рентгеновского излучения является трубка с медным анодом, то эта полоса включает /Са-излучение длиной волны X = 1,54 А и узкую полоску сплошного спектра относительно слабой интенсивности. Если кривые интенсивности получены в одинаковых условиях, то, вычитая из кривой с Ы1-фильтром кривую с Со-фильтром, получим кривую, отвечающую излучению, близкому к Ка Более совершенная монохроматизация рентгеновского излучения достигается отражением от монокристаллов (кварц, германий, кремний, графит, фтористый литий). Кристалл-монохроматор представляет собой пластинку, полученную скалыванием по плоскости спайности кристалла. [c.92]

    Метод получил наибольшее развитие с 1955 г. в связи с предложением австралийского ученого А. Уолша просвечивать атомный пар светом лампы, которая излучает спектр изучаемого элемента, В опытах исследователей XIX в. атомный пар просвечивали источником света со сплошным спектром, и для наблюдения ослабления излучения требовались приборы высокой разрешающей спо- [c.39]

    Для измерения поглощения используют либо фотоколориметры (зондирующее излучение от источника сплошного спектра), либо спектрофотометры (зондирующее излучение монохроматично). Отбор проб осуществляют в специальных поглотительных сосудах (приборы Петри, Полежаева и Зайцева) аспирационным способом, основанном на пропускании известного количества анализируемого газа через поглощающую среду со скоростью до десятков литров в час. [c.925]

    Выбор анодов, применяемых в рентгеновских трубках, определяется, с одной стороны, техническими условиями (высокая температура плавления, малая распыляемость), с другой — желательной длиной волны излучения. В качестве источников монохроматического излучения применяются трубки с анодом из Сг, Ре, Со, N1, Си и Мо, длины волн /Са-линий которых лежат в пределах от 2,29А до 0,71 А. Элементы с меньшими атомными номерами, дающие /Сц-линии с большими длинами волн, не используются, так как их излучение сильно поглощается стенками трубки и воздуха. Элементы более тяжелые, чем Мо, в качестве источника монохроматическото излучения неудобны вследствие того, что они дают слишком интенсивное белое излучение (сплошной спектр), которое создает на рентгенограммах нежелательный фон. Чем меньше атомный помер, тем выгоднее соотношение между интенсивностью характеристического и белого излучения. [c.146]

    Для измерения спектров возбуждения в качестве источника со сплошным спектром излучения пользовались водородной лампой от спектрофотометра VSU-1. В этом случае водородную лампу помещали у входной щели кварцевого монохроматора VSU-1 (на место ртутно-кварпевой лампы СВД). [c.204]

    Описаны также некоторые другие источники первичного излучения, такие, как диодные лазеры или источники сплошного спектра. Последние представляют собой ксеноновые дуговые лампы высокого давления, испускающие интенсивный непрерывный спектр, т. е. не содержащий линий. Это приводит к большой у1Шверсальности в выборе линии первичного излучения. Непрерывные источники использованы в основном для многоэлементной ААС [8.2-16]. Диодные лазеры были бы идеальным источником для ААС, поскольку испускают высокоинтенсивные и узкие линии. Однако на сегодня их спектральный диапазон лежит выше 620 нм, что мешает их широкому использованию в ААС. Возможно удвоение частоты, чтобы расширить спектральный диапазон до 310 нм [8.2-17]. [c.44]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    Источником рентгеновского излучения, используемым в рентгенофазовом и рентгеноструктурном анализе, обычно является рентгеновская трубка. В рентгеновской трубке поток электронов, испускаемый вольфрамовой спиралью (катодом), ускоряется из-за большой разности потенциалов между к атодом и анодом (несколько десятков киловольт, кВ) и ударяется об анод. При этом происходят два основных процесса - торможениа электронов (с одновременным возбуждением тепловых колебаний, т.е, нагревом анода и испусканием рентгеновских квантов, дающих сплошной спектр) и ионизация атомов (удаление электронов с внутренних и внешних электронных оболочек атомов). За счет последующих электронных переходов происходит излучение рентгеновских квантов, дающих линейчатый, или характеристический спектр, вид которого определяется материалом анода. [c.6]

    В спектрофотометрии УФ и видимой областей спектра применяются приборы с фотоэлектрической регистрацией — фотоэлектроколориметры и спектрофотометры. Широко используются фотоэлектроколорйметры марок ФЭК-56М, ФЭК-60, однолучевые спектрофотометры СФ-14, СФ-16, СФ-26, СФ-18. Приборы различаются по спектральным областям, в которых они работают, и по способу монохроматизации светового потока. Фотоэлектроколориметры пригодны только для видимой области спектра, и монохроматизация излучения осуществляется светофильтрами, обладающими избирательным пропусканием излучения в интервале длин волн 30—40 нм. Оба указанных фотоэлектроколориметра отличаются набором светофильтров, пропускающих излучение в разных областях спектра ФЭК-56М — в области 315—610, ФЭК-60—364—930 нм. Источником излучения в них является лампа накаливания, дающая сплошной спектр. Применяются приборы в основном для измерения свето-пропускания или светопоглощения жидких сред с помощью стеклянных кювет разного размера. Выбор кювет обусловливается интенсивностью окраски анализируемого раствора, его количеством и аналитической длиной волны. Спектрофотометры СФ-16 и СФ-26 позволяют провести более узкую монохроматизацию излучения с помощью монохроматоров, в которых диспергирующая призма разлагает сплошное излучение в спектр с интервалом длин волн 1—2 нм. [c.25]

    Рассмотрим два случая измерения поглощения линии при использовании а) источника сплошного спектра или с широкой линией испускания б) узкополосного источника излучения, эмисси- [c.140]

    Возбуждение флуоресценции. В качестве источников света в методе АФС используются источники сплошного спектра (напршусер, ксеноновая лампа сверхвысокого давления), а также линейчатого — лампы с полым катодом и высокочастотные безэлектродные лампы. Соотношение между шириной линии возбуждающего излучения и шириной линии поглощения в методе АФС менее критично, чем в методе атомной абсорбции. Однако и здесь желательно, чтобы контур линии излучения был несколько уже контура линии поглощения, в противном случае часть возбуждающего излучения, оказывающаяся вне контура линии поглощения, не участвует в возбуждении флуоресценции и создает лишь паразитный сигнал неселективного рассеяния света интенсивность атомной флуоресценции тем больше, чем больше интенсивность возбуждающего излучения. Речь идет о так называемом линейном режгше флуоресценции. [c.852]

    Переход к новому источнику рентгеновского излучения ослабил требования, предъявляемые к размерам кристаллов, что особенно важно в структурном анализе высокомолекулярных белков и сложных комплексов, имеющих крупные элементарные ячейки. Сплошной спектр синхротронной радиации и легкость выбора любой длины волны монохроматического излучения сделали возможным подойти к решению фазовой проблемы и разработать метод мультиволновой аномальной дифракции, требующий для решения фазовой проблемы лишь одного кристаллического образца. Существенным дополнением к этому методу стал генно-инженерный способ получения в ауксотрофных клетках аминокислотных последовательностей, в которых все остатки метионина заменены на селенометионин. Использование [8е-Ме1]-белков не только освобождало [c.74]

    При использовании разборной трубки с горячим полым катодом и пламени смеси водорода с воздухом установлена атомная флуоресценция 14 элементов [705]. Предел обнаружения хрома 100 мкг/мл. Исследована возможность определения 13 элементов в пламени С2Н2—воздух по спектрам флуоресценции, возбуждаемым непрерывным источником света (Хе-лампа, 500 вт) при условии одновременного присутствия в растворе посторонних элементов, обладающих интенсивным эмиссионным спектром [679]. Предел обнаружения хрома 3 мкг/мл. Железо и кобальт мешают в количествах > 1 %. Предложен метод с двойной модуляцией — модуляцией излучения источника и модуляцией длины волны возбуждающего излучения в узком спектральном интервале [734]. Используют источник излучения со сплошным спектром (Хе-дуговая лампа). Предел обнаружения хрома 0,6 мкг/мл. [c.96]

    Примечание. В том случае, когда в качестве источника первичного излучения в атомно-абсорбционной спектрометрии используется лампа типа дейтериевой (источник сплошного спектра), любые абсорбционные линии, попадающие в полосу пропускания монохроматора, будзт давать паразитный сигнал абсорбции в соответствии с характерным для них коэффициентом поглощения, т.е. в такой ситуации свобода от спектральньгх помех, как и в атомно-эмиссионной спектрометрии, зависит от разрешения используемого спектрометра, Аналогичная проблема, но с обратным знаком, возникает при использовании источника сплошного спектра в качестве корректора фона абсорбционные линии постороннего элемента, находящиеся в пределах полосы пропускания монохроматора, дают свой сигнал абсорбции, который далее вычитается из аналитического сигнала, что приводит к ошибкам измерений (к перекомпенсации фона). [c.900]

    В качестве источников зондирующего излучения в недисперсионном ОАГ используются тепловые источники сплошного спектра (нихромовая проволока, нагретая до 700-900 °С штифт Нернста, нагретый до 1400 °С). В лазерных ОАГ — непрерывные и импульсные лазеры, генерирующие в ИК-, видимом и УФ-областях спектра. Модуляция зондирующего излучения осуществляется с помо- [c.923]


Смотреть страницы где упоминается термин Источники излучения сплошного спектра: [c.71]    [c.81]    [c.142]    [c.322]    [c.179]    [c.326]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Источники излучения

Спектр сплошной



© 2025 chem21.info Реклама на сайте