Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа интегральная

    Важными термодинамическими характеристиками набухания являются дифференциальная работа, интегральная и дифференциальная теплоты набухания. Дифференциальная работа набухания определяется по уравнению [c.315]

    Сравнительно легко можно создать совершенные НК с низким уровнем внутреннего трения и высокой упругостью. Их уже используют для контроля работы интегральных схем и других целей. [c.505]


    В большинстве исследований турбулентных пламен рассматривались пламена, развивающиеся вдоль вертикальных или наклонных поверхностей, и осесимметричные пламена, причем всегда в условиях неподвижной среды. Проведено много экспериментальных исследований, в ходе которых измерялись скорости горения, средние скорости и температуры. В качестве примеров можно привести работы [8, 23, 91]. Результаты расчетов, проведенных в этих работах интегральным методом, удовлетворительно согласовались с данными измерения скорости горения и плотности теплового потока на стенке в области факела. В работах [49, 90] применялась (й — е — g-)-модель турбулентности (см. гл. 11). Решение, полученное в первой из них, позволяет довольно точно определить структуру пламени и скорости горения. Однако остаются неопределенности при расчете как характеристик турбулентности, так и теплового излучения. [c.414]

    Работа интегрального детектора может быть основана также на определении количества реактива, израсходованного при титровании элюата (если анализируют вещества кислого или основного характера). [c.150]

    Работа интегрального детектора может быть основана также на измерении [12] давления в камере, в которую поступает элюат после поглощения газа-носителя (С02), на определении [13] количества реактива, израсходованного при титровании элюата (при анализе веществ кислого или основного характера), и т. д. [c.166]

    С уменьшением плотности возрастает момент инерции ИП (рис. 61). Однако вблизи р = 700 кг/м на кривой о з, = = / (р ) имеется перегиб, свидетельствующий о том, что при дальнейшем уменьшении плотности снижение прочности уже не компенсируется возрастанием момента инерции, и жесткость материала уменьшается [122, 246]. Для надежной работы интегральных пенопластов в качестве конструкционных материалов Крамером 133] был предложен критерий (фактор надежности), равный отношению объема профиля к площади сечения ИП. Для интегрального ПС этот фактор равен 4. [c.123]

    Такое совмещение регулирования по заданию и отклонению в сочетании с логической схемой, управляющей работой интегральной и дифференциальной (в случае ПИД-регулятора) частей, улучшает переходный процесс и облегчает настройку регулятора (рис. 1). [c.164]

    Интегральные методы были применены Карманом и Польгаузеном для решения нелинейных гидродинамических задач пограничного слоя. В предлагаемой работе интегральный метод используется применительно к задачам теплообмена. Аналогом толщины пограничного слоя здесь является глубина проникания . Решения, найденные с помощью этого метода, хотя и не совсем [c.3]

Рис. 5.11. Интегральные характеристики ступени при работе на газах с различными показателями изоэнтропы Рис. 5.11. <a href="/info/1402985">Интегральные характеристики</a> ступени при работе на газах с <a href="/info/291736">различными показателями</a> изоэнтропы

    Проточные реакторы—наиболее распространенный тип реакторов, применяемых для экспериментального исследования гетерогенных каталитических процессов, потому что при стационарном состоянии легче контролировать режим и проводить анализы. Как отмечалось в начале книги, проточные реакторы могут быть интегрального и дифференциального типов. При анализе опытных данных, полученных при проведении процесса в дифференциальном проточном реакторе, можно пользоваться средними значениями парциальных давлений компонентов по всему объему аппарата или даже начальными значениями, что позволяет избежать осложнений, обусловленных изменением этих величин по мере протекания реакции. В том случае, если ни один из продуктов реакции не присутствует в исходной смеси, данные, получаемые при работе на дифференциальном реакторе, характеризуют начальную скорость процесса. [c.226]

    По принципу работы указанные установки, точнее реакторы, подразделяются на интегральные и дифференциальные (безградиентные). Интегральные реакторы представляют собой трубчатые проточные аппараты в данном случае концентрации компонентов меняются по длине реактора, и, следовательно, выходные показатели являются интегралом скоростей процесса по всем элементарным объемам аппарата. [c.35]

    В ряде случаев интегральные реакторы конструктивно более просты и удобны в работе, чем дифференциальные реакторы, однако в целом при применении их возникают различные затруднения. В частности, экспериментальные трудности обусловлены необходимостью избежать осевого смешения и желательностью поддержания изотермического режима по всей длине интегрального реактора, что далеко не просто в случае сильно экзотермических (эндотермических) реакций. [c.35]

    Гу па л о Ю. П., Р я 3 а н ц е в Ю. С., О режимах работы химического реактора идеального вытеснения с интегральным учетом тепловыделения, Ж. прикл. мех. и технич. физики, № 1, 82 (1969). [c.186]

    Величина AF представляет собой интегральное изменение свободной энергии при адсорбции. Убыль свободной энергии равна интегральной работе адсорбции [c.482]

    Последовательность сигналов детектора, записанная на ленте или зафиксированная иным способом при прохождении анализируемой смеси веществ через хроматографическую колонку, образует хроматограмму. При интегральном детектировании, когда детектор фиксирует общее количество вышедших из колонки компонентов, хроматограмма представляет ряд ступеней, при дифференциальном детектировании—ряд полос или пиков. При данном режиме работы колонки время выхода пика является однозначной характеристикой выходящего компонента. Предварительная [c.548]

    В работе следует определить константы калориметра К и удельную интегральную теплоту растворения вещества. [c.134]

    Описанный экспериментальный реактор, построенный на осно ве данных, полученных на ранее упомянутом интегральном лабораторном реакторе, работал в течение нескольких месяцев. Температуры измерялись через 0,5 м] этого оказалось вполне достаточно. Результаты исследований приведены на рис. И-29, П-ЗО, П-31. На этих рисунках представлен профиль температуры и степени превращения по длине слоя в зависимости от массовой скорости протекающего газа и его начальной температуры. [c.182]

    В процессе анализа структуры все приведенные интегральные характеристики материала рассчитываются по результатам анализа представительного объема и, таким образом, число составных частей фазы, среднее значение поверхностной кривизны, связность и другие характеристики обычно относятся к единице его объема, т. е. являются средними статистическими значениями удельных объемных характеристик. Строго говоря, связность G, рассматриваемая как род гомеоморфных поверхностей, не должна быть подвержена статистическим колебаниям. Однако в природе формирование контактов частиц является статистическим процессом, зависящим от таких стохастических факторов как перемешивание в системе, смачивание, диффузия, растворение и рост частиц фаз, взаимодействие фаз и др., поэтому в принципе возможно рассматривать Gy как статистическую величину. Потребность экспрессного определения связности фаз в многофазных средах в последнее время быстро растет в связи с определяющей ролью этой характеристики в описании и прогнозировании механического поведения структурно неоднородных материалов, выявления структуры многофазных потоков в его объеме. Вместе с тем существующие методы определения Gy до сих пор практически основывались на методе анализа параллельных сечений структуры. В работах [47, 481 предложен иной метод определения статистической характеристики связности на основании простых измерений характеристик одного случайного представительного сечения материала. Разрабатываются также методы стереоскопической оценки Gy. [c.136]


    Особенности диффузии и проницаемости газов в мембранах аморфной структуры при температурах выше и ниже температуры стеклования Гст обсуждаются в работах [6, 8, П, 14]. Мембранную матрицу при Г<7 ст рассматривают как неравновесную систему, для которой существенна конфигурационная часть свободного объема, зависящая от степени неравновесности системы, ее предыстории и во многом определяющая интегральные кинетические характеристики подобных материалов [c.87]

    Метод ртутной порометрии основан на том, что ртуть при атмосферном давлении не входит в поры образца, погруженного в нее. Если извне приложить добавочное давление, то ртуть войдет в поры, сжав имеющийся воздух до пренебрежимо малого объема, который, однако, трудно проконтролировать. Скорость возрастания объема вдавливаемой в образец ртути в зависимости от повышения давления является функцией распределения пор по размерам, что дает возможность получить как дифференциальную, так и интегральную кривые распределения. К достоинствам метода относится возможность одновременной оценки общего объема пор образца (т. е. величины ео). К недостаткам, помимо вышеуказанной неконтролируемости объема сжатого в образце воздуха, следует отнести возможность деформации самого материала мембраны (особенно в случае полимерной мембраны), фиксирование тупиковых пор, а также непригодность образца к дальнейшей работе вследствие амальгамирования пор. [c.102]

    Реактор, в котором концентрация компонентов реакции непрерывно изменяется вдоль слоя катализатора или (в данном месте катализатора) в ходе процесса, называется интегральным реактором. В дифференциальном реакторе концентрация по всему слою катализатора (а в отдельном месте катализатора— во времени) практически не изменяется, например при работе в проточной системе при малых степенях превращения. Подробнее об этом см. в книге Киперман С. Л., Введение в кинетику гетерогенных каталитических реакций, изд-во Наука , 1964,стр. 383. — Прим. перев. [c.175]

    Увеличение размеров реакционных устройств для проведения процессов нефтепереработки и нефтехимии может сопровождаться изменением их конструкции (например, изменением устройства для распределения сырья в реакторе и т. д.). Не удается также безгранично уменьшать размеры реактора. Изучение технических процессов крекинга, платформинга и других на одном-двух зернах катализатора в дифференциальном реакторе едва ли возможно, так как для анализа результатов необходимы значительные количества продуктов, а при малых количествах катализатора это требует длительного времени работы. Вследствие этого приходится изучать процесс в интегральном реакторе в условиях, когда физический транспорт может оказывать тормозящее действие на химические превращения. [c.136]

    По мнению В. С. Бескова, В. П. Кузина и М. Г. Слинько [4,5], режим, близкий к идеальному вытеснению, наблюдается для многих промышленных реакторов. Условия, позволяюш,ие создать режим идеального вытеснения в проточном реакторе (числа Рейнольдса, соотношения диаметра и дливы реактора, соотношения диаметров реактора и зерна катализатора), описаны в монографии [6]. Теория изотермических проточных реакторов идеального вытеснения детально разработана в работах Г. М. Панченкова [7—8]. В трудах Г. М. Панченкова с сотрудниками [9—12] показано хорошее соответствие уравнений, выведенных на основе теоретических соображений, экспериментальным данным. Все это объясняет тот факт, что при изучении процессов нефтепереработки до настоян его времени используют главным образом интегральные проточные реакторы. [c.158]

    По расчетам М в литературе приведено очень мало данных. Кроме расчета по уравнению Скэтчарда — Гильдебранда для регулярных растворов [62] во многих работах даются лишь общие понятия об интегральной и парциальной теплотах растворения. В одной из работ [67] описывается методика расчета AI по данным равновесия жидкость — пар, которая требует экспериментальных определений парциальных давлений компонентов. [c.248]

    Проточные интегральные реакторы, обычно заполненные катализатором трубки, аналогичны аппаратам, применяемым в промышленности, и по условиям своей работы близки к ним. Это имеет существенное значение в прикладных исследованиях, когда кроме чисто химических и расчетных данных необходимо выявить технологические особенности процесса, получить образцы целевого продукта, сведения о длительности работы катализатора и качества целевого продукта и т. п. Поэтому стадия модельной установки с проточным реактором является практически необходимой в разработке промышленных гетерогенно-каталитических процессов. Целесообразно использовать эти реакторы для получения данных по кинетике, необходимых для расчета и проектирования промышленных реакторов. При применении современной машинной вычислительной техники постановка опытов на проточных интегральных реакторах может дать большой объем информации, позволяющий составить математическое описание процесса с большой степенью надежности и тен самым решить задачу перехода от лабораторного или пилотного реактора к промышленному любой схемы и конструкции, в том числе и к оптимальному. [c.402]

    Дифференциальные реакторы, работающие по принципу малых степеней превращения, конструктивно и по экспериментальной технике не отличаются от проточных интегральных реакторов, поэтому не будем на них останавливаться. Прочие варианты дифференциальных реакторов снабжены приспособлениями, обеспечивающими одинаковые условия работы всего слоя катализатора по всем кинетическим параметрам, в том числе и по концентрациям. [c.409]

    Проточные интегральные лабораторные реакторы для жидкофазных реакций представляют собой простые трубки из стекла или металла. При работе с высокими давлениями конструктивно приходится вносить значительные усложнения, которые подробно изложены в работе [20]. [c.418]

    В случае работы на установке интегрального типа начальный вектор состава можно выразить как линейную комбинацию собствен- [c.447]

    Если перепад давления отрицательный, то работа считается положительной, и наоборот. Символ б показывает, что выражение элементарной работы не является полным дифференциалом. На рис. 1, б работа характеризуется элементарной площадкой, тогда как вся площадь фигуры соответствует интегральной работе для всего потока внутри машины [c.5]

    Предложенная [1] на основе обобщения и развития. многочисленных работ по математическим моделям и методам расчета надежности сложных технических систем [10, 11] классификация математических моделей надежности ХТС приведена на рис. 6.1. Класс символических моделей надежности ХТС включает пять групп моделей матричные логико-вероятностные и логико-статистические модели дифференциальные и интегральные уравнения [1, 2]. [c.150]

    Другой подход основан на разработке психологических моделей естественного языка, основанных на предположении о второ-степенности роли синтаксического анализа и ограниченности контекста в рамках реального диалога. Так, в работе [87] предложена концепция системной грамматики, в которой выделяются три базовых ранга единиц Предложение, Группа слова. Слово. Имеется несколько типов групп Группа существительного, Группа прилагательного, Глагольная группа, Предложная группа. Каждое слово считается интегральной единицей оно не расщепляется на гипотетические атомы, а предполагается, что все формы слова — это одно слово, но с разным набором признаков. Полная модель языка имеет форму программы его разбора, а грамматика рассматривается как набор инструкций для разбора предложения языка. [c.157]

    Сложность объектов химической технологии иногда приводит к необходимости ограничиваться их описанием в виде конечных функциональных соотношений, по существу минуя стадию построения оператора Ф как совокупности дифференциальных, интегральных и интегро-дифференциальных уравнений с соответствующими дополнительными условиями. Обычно этим приемом пользуются для характеристики статических режимов работы системы. В общем случае целевой технологический показатель у, характеризующий состояние системы, зависит от нескольких варьируемых переменных х , х ,- х . Между ними существует функциональная связь общего вида [c.91]

    Прежде всего представим нелинейную систему дифференциальных уравнений (8.42) в форме системы линейных и квазилинейных интегральных Зфавнений. Как уже отмечалось, это можно сделать либо путем разложения в степенной ряд решения нелинейного дифференциального уравнения по специальным образом введенному параметру [8 ] (этот метод подробно изложен также в работе [15]), либо с помощью специальной замены переменных [15]. В данном случае к цели быстрее приводит второй метод. Последовательно преобразуем каждое из уравнений системы (8.42) к интегральному виду. [c.485]

    По известным M t) и m t) находилась функция I t ) путем решения интегрального уравнения (3.200). К недостатку этого метода следует отнести то, что масса кристалла определяется только его возрастом T=i—f и не зависит от момента образования зародыша данного кристалла Г. В работах [102—106] для избежания данного недостатка вводится интеграл свертки, имеющий вид [c.299]

    В работе [12] коэффициент диффузии растворителя при идентичных условиях на 1—2 порядка выше, так как он является эффективной кинетической константой, учитывающей интегральные свойства рассматриваемых сред. В предлагаемой модели коэффициент диффузии определен на основании мономерного коэффициента трения /т  [c.327]

    Пропорционально-интегральное регулирование иснользуется там, где необходимо применить узкий диапазон регулирования, чтобы исключить неустойчивую работу или перегрузку регулятора, а также тогда, когда частота или величина изменения нагрузки процесса возрастает. [c.298]

    Рассмотрим решение задачи о температурной устойчивости работы реактора на примере необратимой экзотермической реакции, протекающей в реакторе полного смешения, работающем при интегральном адиабатическом режиме. [c.234]

    Реактор (см. рис. 3.67) представляет собой вертикальный цилиндрический аппарат с переменным сечением по высоте. Наличие кипящего слоя позволяет классифицировать аппарат как реактор идеального вытеснения с одинаковым временем пребывания углеводородных молекул в реакционной зоне. С другой стороны, колебание объемных скоростей в кипящем слое выравнивает концентрации реагентов. Этот фактор, а также изотермичность слоя позволяют считать аппарат реактором полного смешения. Гомогенность кипящего слоя и обеспечение тепловой защиты аппарата создают интегрально-адиабатические условия, что значительно повышает константу скорости реакции и эффективность работы реактора. [c.390]

    Различают одно- и многоконтактные (логическая клипса) логические пробники. Логическая клипса предназначена для провер ки логики работы интегральных микросхем (ИМС) и представляет собой контактный зажим, который закрепляется на корпусе-микросхемы с двухрядными штырьевыми выводами. На верхней панели прибора расположены светодиодные индикаторы, отража- [c.165]

    Однако при более точных подсчетах необходимо в уравнение (106а) для <7 и А5 внести поправку на их температурную зависимость. При этом, выражая <7 и Д5 через теплоемкости в их функциональной зависимости от температуры, получим следующие интегральные уравнения максимальной работы реакции  [c.194]

    И нредставляющи.х интерес для производства битумов. В связи с этим предложено представлять разгонку нефти по ИТК на вероятностном графике, отражающем нормальное (гауссовское) распределение в интегральной форме [131, 132] (по аналогии с таким же представлением отдельны.х фракций нефти [133, 134]). На вероятностном графике истинные температуры кипения ложатся на одну прямую (рис. 59).. втор работы [131] предлагает этому явлению следующее теоретическое объяснение. [c.92]

    Действительно, спектры ЯМР высокого разрешения протонов воды в дисперсиях а- и Ь -монтмориллонита [103] характеризуются сдвигом резонансного сигнала в сторону более сильного поля. Это указывает на то, что под влиянием поверхности часть водородных связей в воде граничных слоев толщиной й 7,5 нм (межчастичное расстояние —15 нм) разрушается. Приведенные результаты нашли независимое подтверждение при изучении ИК-спектров водных дисперсий Ыа-монт-мориллонитрила 20—110%-й влажности в области составной полосы (5200—4900 см ) деформационного и валентного асимметричного колебаний связей ОН (г-2 + з) [Ш]- В цитируемой работе было показано, что вклад высокочастотной составляющей 5200 СМ , относящейся к слабосвязанным молекулам воды, в интегральную интенсивность сложной полосы для дисперсий выше, чем для жидкой воды. ИК-спектры полимолекулярных адсорбционных слоев на поверхности кварца в области валентных ОН-колебаний [112] также обнаруживают увеличение поглощения при 3600 см , характерного для слабо нагруженных ОН-групп молекул воды, хотя основная полоса 3400 см сдвинута по сравнению с аналогичной полосой в спектре жидкой воды в сторону меньших частот. (Последнее, по-видимому, связано с образованием более прочных водородных связей между поверхностными гидроксильными группами кварца и адсорбированными молекулами воды первого слоя.) Таким образом, приведенные выше данные указывают на то, [c.39]

    Большая часть работ посвящена изучению несвязанных форм исг опаемых порфиринов. Однако показано, что часть из них ассоциирована либо химически связана как с другими компонентами, органического вещества осадочных пород, так и между собой. Гель-хроматография позволила выявить в смеси порфиринов нефтяных сланцев и нефтей соединения с мол. весом от 2000 до 20 ООО" и более [821]. Эти соединения, по мнению авторов [821], представляют собою продукты неоднородной радикальной полимеризации порфиринов или их металлокомплексов с асфальтосмолистыми компонентами органического вещества осадочных пород. В работе [822] выявлен ряд косвенных признаков, указывающих на присутствие в нефтяных сланцах димеров ванадилпорфиринов. Имея высокий молекулярный вес ( 1000), эти соединения тем не менее обладают малой хроматографической подвижностью, низ- КИМ соотношением интегральной интенсивности полос поглощения в области валентных колебаний С — Н (2880—3000 см ) и V = = О (980—1010 см ), а также высоким коэффициентом экстинцик в электронном спектре поглощения (табл. 5.1). Постоянство положения полосы колебания V = О во всех фракциях, полученных ТСХ на силикагеле, исключало возможность димеризации ванадилпорфиринов по связи V — О — V. Поэтому было высказано-предположение, что димеризация порфириновых ядер происходиг [c.145]

    В) Определение напряжений во фланцах. Приводимый ниже метод раечета фланцев [139] )фямеиим )4а1 к свободным, так и к цельным (интегральным) фланцам со втулкой и без таковой, показанным на ( )иг. 77, на которой также г оказаиы рекомендуемые типы и размеры сварки. Во всех случаях прокладка находится внутри окружности болтов н флат ц работает иа изгиб как тогда, когда сосуд находится под давлением, так н тогда, когда давления нет. [c.285]

    К цифровому регулятору подключаются первичные контрольно-измерительные приборы и исполнительный механизм, соответствующий требуемому контуру регулирования. В результате опроса первичных контрольно-измерительных приборов формируется массив исходных данных, содержащий значения режимных параметров процесса. Путем сравнения с предельными значениями параметров в нормальном режиме функционирования системы анализируется достоверность полученной информации и проверяется включение элементов контура регулирования. Если информация окажется недостоверной или не все элементы контура регулирования будут включены, то формируется файл сообщений о неисправности системы и выдается сигнал об аварийном окончании работы цикла, после этого организуется диалог с оператором. В противном случае определяется признак начала отработки операции. Если требуемый >. итур регулирования начинает работу по стабилизации рел -,гиых параметров на этой операции, то рассчитывается нам ьиая установка регулируюнгего органа для плавного переход. объекта регулирования к требуемой операции и производивобнуление рабочей ячейки, используемой для вычисления интегральной составляющей цифрового регулятора. Если контур [c.277]


Смотреть страницы где упоминается термин Работа интегральная: [c.313]   
Адгезия жидкости и смачивания (1974) -- [ c.206 ]

Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Интегральные



© 2025 chem21.info Реклама на сайте