Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектр абсорбционные

    Фотометрический метод анализа основан на избирательном поглощении электромагнитных излучений различных участков спектра однородной системой . Поэтому данный метод при условии использования монохроматических излучений называют методом абсорбционной спектроскопии или спектрофотометрии. [c.458]

    Спектры триплет — триплетного поглощения. Поскольку при импульсном фотолизе достигается значительная концентрация триплетных молекул, они могут изучаться при помощи абсорбционной спектроскопии. Метод импульсного фотолиза позволяет непосредственно следить за кинетикой гибели триплетных молекул в растворе при обычных температурах. Поглощение света происходит за счет электронных переходов между возбужденными состояниями (рис. 58). [c.160]


    Селективные фильтры используют либо для выделения узкой спектральной области (узкополосные), либо для отделения широкой области спектра. Лучшие узкополосные фильтры имеют полосу пропускания 0,1 нм, однако количество пропускаемого ими излучения невелико, поэтому основное назначение светофильтров при спектральных исследованиях — грубая монохроматизация или неселективное ослабление излучения. Наибольшее применение в практике спектрального анализа получили абсорбционные фильтры, принцип действия которых основан на избирательном поглощении излучения веществом фильтра. [c.8]

    Абсорбционный спектр хлора, представленный на рис. 20, показывает, однако, что максимум поглощения для хлора лежит о.коло [c.141]

    Спектроскопия 4/780. См. также Спектральный анализ. Спектры абсорбционная 1/3, 4, 408 2/56  [c.711]

    Использование УФ-области спектра (абсорбционный метод) для микрохимического анализа значительно упростило задачу обнаружения ионов дробными реакциями в определенной последовательности с предварительным отделением групп ионов (неаналитических), которые можно затем обнаружить в один прием. Такой систематический ход анализа с применением дробных реакций при наличии сложных смесей уменьшает число операций и значительно ускоряет анализ. Сочетание дробных реакций и систематического хода анализа предполагает восемь последовательных операций для разделения и обнаружения, увеличивает достоверность результатов и уменьшает количество вещества, расходуемого в ходе анализа. [c.183]

    Таким образом, сжигая неизвестное соединение, снимая спектр и измеряя оптическую плотность полос 670 см по графику можно найти содержание углерода, т. е. можно определить углерод в органических веществах спектро-абсорбционным методом. [c.155]

    Спектро-абсорбционные методы анализа в инфракрасной области в целях элементарного анализа не применялись. Надо [c.156]

    Четвертый том справочника содержит сведения по аналитической химии (методы разделения весовой, объемный и газовый анализ потенциометрический, полярографический, колориметрический и другие методы анализа), по атомному эмиссионному и абсорбционному спектральному анализу, спектрам поглощения неорганических и органических соединений. Приводятся также данные о показателях преломления жидкостей и оптической активности органических соединений. [c.2]


    Оптическая плотность и молярный коэффициент погашения зависят от длины волны падающего светового потока. Эта зависимость (О — К или е — К) называется абсорбционной кривой, или кривой поглощения. В видимой области спектра абсорбционная кривая может иметь один или больше максимумов, а в некоторых случаях (даже при наличии видимой окраски раствора) такие максимумы могут отсутствовать. Длину волны, соответствующую максимуму, обозначают Амакс, а коэффициент молярного погашения при этой длине волны емакс. Значение емакс обычно используют в качестве объективной оценки чувствительности реакции, на которой основан тот или иной фотометрический (или спектрофотометрический) метод. [c.79]

    Для переходных металлов, имеющих сложные спектры, абсорбционные линии находятся в тесном окружении линий, не поглощаемых атомным паром. Следовательно, чувствительность атомно-абсорбционного анализа в этом случае прямым образом зависит от разрешающей силы монохроматора н спектральной ширины его щели. [c.51]

    Б. Спектроскопические методы. На первый взгляд кажется, что оптическая спектроскопия является идеальным методом для изучения неустойчивых промежуточных продуктов, однако во многих случаях применение этого метода встречает существенные трудности. Причина заключается в малой концентрации присутствующих промежуточных веществ, а также в сложности выделения спектров промежуточных веществ (эмиссионных или абсорбционных) из спектров других присутствующих веществ. Тем не менее имеется большое число примеров успешного использования этих методов. Так, спектры испускания возбужденных радикалов, атомов и ионов наблюдались в случае тлеющих и дуговых разрядов, а также во взрывных реакциях и пламенах. В частности, при электрически возбуждаемом излучении [16, 17] были идентифицированы радикалы Сг, СН, Н8, 82, О, СК, КН, ОН, PH, HgH. Подобным же образом в пламенах и взрывах [18] наблюдались, в частности, радикалы С2, СН, ОН, КН, 80, Н, С1, СНО. Однако в обоих этих примерах наблюдаемые спектры испускания могут дать сведения только об относительном количестве возбужденных радикалов и ничего не говорят о типе или количестве радикалов, присутствующих в невозбужденных состояниях и не способных к излучению. [c.96]

    В фотохимических реакциях многие радикалы определялись путем наблюдения их спектров поглощения. На этот метод позднее обратили большое внимание в связи с развитием техники разрядов высокого напряжения, что дало возможность создать высокую концентрацию радикалов В газовой фазе. Работы в этой области описаны Портером [34], Герцбергом и Рамсеем [17]. К сожалению, вплоть до настоящего времени никому ие удалось определить с помощью абсорбционной спектроскопии наличие очень важного метил-радикала. [c.10]

    В работе [62, с. 39—46] описано применение абсорбционной спектроскопии в инфракрасной области спектра (диапазон 650—1000 см ) для анализа смеси [c.134]

    III-7. Дифракция рентгеновских лучей абсорбционный и эмиссионный спектры (приблизительная длина волны 10 — 10 см) [c.187]

    С помощью атомно-абсорбционной спектрофотометрии, потенциометрического титрования, ИК-спектроскопии и спектров ПМР [c.342]

    Определение содержания микроэлементов в топливах. Содержание микроэлементов (ванадия, кобальта, молибдена) в топливах определяют атомно-абсорбционным методом. Метод основан на измерении величины резонансного поглощения аналитических линий определяемых элементов в атомных спектрах анализируемых топлив по эталонным растворам. Указанные микроэлементы являются коррозионно-агрессивными в продуктах сгорания топлив к материалам деталей горячего тракта ГТД. [c.211]

    Атомный эмиссионный и абсорбционный спектральный анализ Спектры поглощения Показатели преломления н оптическая активность Указатель методов анализа и разделения элементов [c.13]

    При записи спектров поглощения обычно используют две кюветы кювету сравнения, заполненную растворителем, и кювету образца, заполненную исследуемым раствором в данном растворителе. Применение двух кювет позволяет компенсировать поглощение растворителя и материала кювет, а также потери излучения при отражении его на границах различных оптических сред. В абсорбционной спектрофотометрии применяются кюветы разных размеров длина оптического пути в кювете изменяется от долей миллиметра до нескольких сантиметров, объем — от долей миллилитра до нескольких десятков миллилитров. Для работы в УФ-области кюветы изготовляются из кварца, в видимой области можно пользоваться стеклянными кюветами. [c.17]

    Возбужденные электронные состояния. Спектральная область, обычно используемая для абсорбционных и люминесцентных измерений (200—800 нм), соответствует электронным переходам в молекуле. Поглощение молекулой кванта света в этой области спектра приводит к переходу электрона на более высокий энергетический уровень. Взаимодействие излучения с молекулой может быть представлено кривыми потенциальной энергии, соответствующими основному и возбужденному состояниям. [c.50]


    Благодаря значительным различиям в УФ спектрах линеарно, ангулярно и периконденсированных систем электронная спектроскопия дает информацию о характере сочленения ароматических циклов в молекуле проще и надежнее, чем многие другие спектральные методы. Так, с помощью УФ метода установлено отсутствие гомологов акридина в нефтяных концентратах, изучавшихся в работах (20, 26]. Сведения о характере сочленения колец можно получить и из эмиссионных или абсорбционных спектров флуоресценции таким способом были идентифицированы структурные типы нефтяных бензокарбазолов [26]. [c.27]

    Кроме абсорбционных светофильтров для видимой и ультрафиолетовой части существуют также фильтры, позволяющие отделить видимую часть спектра от инфракрасной. Ближайшая инфракрасная область хорошо отсекается от видимой при помощи растворов хлорида меди (П), более далекая — простым водяным фильтром (рис. 52). [c.143]

    Для получения свободных атомов анализируемое вещество наг -вают до высокой температуры в пламенах. Способы введения вещества в пламена и происходящие при этом процессы описаны в Методах эмиссионной фотометрии пламени . Помимо пламен для атомизации веществ в атомно-абсорбционном методе используют специальные печи-кюветы, в которые вводят небольшое количество пробы (чаще всего в виде капли раствора). При повышении температуры печи вещество испаряется и атомизируется. Происходящие при этом процессы аналогичны процессам в пламенах. В качестве источников излучения, ослабление интенсивности которого определяется, могут быть использованы, например, лампы накаливания или различного рода газоразрядные лампы, испускающие непрерывные (сплошные) спектры в широких спектральных областях. [c.35]

    Поскольку ширина спектральных линий, соответствующих электронным переходам в атомах, относительно мала (- 10-2 д ), необходимо применять спектральную аппаратуру, позволяющую выделять из сплошного спектра монохроматические составляющие с ширинами, равными (меньшими) ширинам атомных спектральных линий. Такая аппаратура хотя и вполне доступна, но относительно громоздка и, кроме того, обладает малой светосилой, что затрудняет регистрацию слабых сигналов. Поэтому атомно-абсорбционный метод анализа с применением источников излучения сплошного спектра не нашел широкого распространения. [c.35]

    Число атомов, находящихся в возбужденном состоянии, незначительно по сравнению с их числом в основном состоянии, поэтому переходы атомов, сопровождающиеся поглощением энергии, с уровней, отличающихся от основного, будут встречаться крайне редко. Это обусловливает простоту спектров поглощения атомно-абсорбционного метода из-за меньшей вероятности спектральных помех. [c.37]

    Приемники излучения. Подразделяются на тепловые, обладающие высокой инерционностью, и фотоэлектрические — практически безынерционные. В УФ и видимой областях спектра абсорбционные измерения проводят с помощью фотоэлементов, имеющих внешний фотоэффект (вакуумные или газонаполненные фотоэлементы и фотоумножители). В ИК области спектра в качестве приемника применяют фотоэлементы с внутренним фотоэффектом — фогосо-противления, балометры (приемники радиации, принцип действия которых основан на зависимости сопротивления металла или полупроводника от температуры), термоэлементы и оптико-акустические приемники. [c.55]

    Рядом исследований установлено, что процесс фотолиза эргостерола заключается в образовании шести фотодериватов, из которых только один (Ог) обладает витаминными свойствами что эффект фотохимической реакции обусловливается лишь поглощенной раствором лучистой энергией, причем при полном поглощении лучей данной области спектра (абсорбционный максимум) получается наивысший эффект фотохимической реакции что каждый из фотодериватов имеет в ультрафиолетовой части спектра свой абсорбционный максимум, но последний находится в очень небольшом диапазоне длины световой волны (для эргостерола 260— 293 М для витамина D2 — 265 v(i для токсистерола 248 М[л что превращение эргостерола в кальциферол происходит под влиянием лучей ультрафиолетовой области спектра с длиной волны 280 — 313m x, а область спектра с длиной волны 218—280 м 1разру-щает кальциферол. Сложность фотохимических реакций, протекающих при облучении эргостерола, их чувствительность к изменению длины волны действующих лучей выдвигают перед исследователями и заводскими инженерами ряд сложных проблем, от разрешения которых зависит эффективность процесса фотолиза эргостерола. Достаточно будет отметить, что в настоящее время полезный эффект этой реакции колеблется в пределах 33—35%, т. е. лишь Уз эргостерола переходит при фотолизе в кальциферол. Вполне понятно, что увеличение эффекта фотолиза эргостерола обеспечивает соответствующее уменьшение стоимости продукции и увеличение производительности завода почти без каких бы то ни было дополнительных затрат. [c.241]

    СПЕКТРЫ м мн. 1. Совокупности значений параметров системы или процесса. 2. см. электро.ыагнитные СПЕКТРЫ. абсорбционные С. см. СПЕКТРЫ поглощения. атомные С. Совокупность линий в ультрафиолетовой, видимой и инфракрасной областях спектра электромагнитного излучения, испускаемого или поглощаемого при квантовых переходах между уровнями энергии свободных или слабо-взаимодействующих атомов. [c.408]

    Чувствительность абсорбционного метода может быть повышена (приблизительно в К) раз), например, путем замены обычно применяемого источника света с непрерывным спектром источником с линей итым спектром (метод линейчатого поглощения, см. [63, глава III, 2)]. [c.26]

    Другая возможность повышения чувствительности абсорбционного метода заключается в удлинении оптического пути светового пучка (эффективпой толщины поглощающего слоя) при помощи системы зеркал. Таким путем Джессен и Гейдон [3361 по спектру поглощения в кислородном пламени ацетилена обнаружи.чи радикалы СН, и С3. [c.26]

    В методах эмиссионной спектроскопии и атомно-абсорбцион-ной спектрофотометрни вещество переводится в состояние атомного пара , что практически реализуется в плазме различных видов. Плазма — квазииейтральный электропроводный газ, состоящий из свободных электронов, а также атомов, ионов, радикалов и молекул в основных и различных возбужденных энергетических состояниях. Кроме спектральных линий в ее спектре наблюдаются системы электронно-колебательпо-вращательных полос молекул и радикалов и сплошной фон. Плазма при давлениях, близких к атмосферному, находится в состоянии термодинамического равновесия, при котором средняя кинетическая энергия Е ее частиц (свободных атомов, ионов, электронов) примерно одинакова и определяется температурой 7  [c.10]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    Спектры ЯМР. Ядерный магнитный резонанс (ЯМР) является одним из новых спектроскопических методов 155]. Вращающееся ядро ведет себя, как малый магнит, который ориентируется в маг-нитнсм голе. Эти ориентации соответствуют различным квантовым уровням энергии, между которыми могут быть переходы. Для магнитного поля в10 Гс абсорбционная частота находится в области радиочастот. Энергетические уровни выражаются магнитными квантовыми числами, и энергетические изменения аналогичны тем, ко-тсрье определяются в других видах спектроскопии. [c.52]

    Для идентификации многокомпонентных органических систем обычно используется сочетание нескольких методов, например, фракционирование методов ЯМР-, УФ-, ИК -спектроскопии и хроматографии, масспектрометрии [11,12] Существенным недостатком известных методик является трудоемкость, длительность и неоднозначность результатов анализа. До последнего времени применению методов электронной абсорбционной спектроскопии препятствовало отсутствие теории электронных спектров таких систем, главным образом из- за их сложности ( рис 4 1). Для исследования таких объектов требуются новые методы. Предлагаемый в данной работе подход относится к ( ю-номенологическим методам, т к. система, поглощающая излучение, рассматривается как единое целое, а максимумы спектров и электронные переходы во внимание не принимаются. Такое необычное направление в электронной спектроскопии определено нами, как электронная феноменологическая спектроскопия (ЭФС). Вещество изучаегся как единое це юе, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных групп или компонентов системы. Известно, что электронное строение веществ определяет его физико-химические свойства [13]. В свою очередь, электронные спектры также определяются конфигурацией электронных оболочек [14]. [c.64]

    В атомно-абсорбционном методе анализа в качестве источников излучения чаще всего применяют специальные газоразрядные лампы с полым катодом. Конструкция ламп такова, что в спектре испускания интенсивно проявляются спектральные линии атомов, входящих в состав материала катода, или веществ, специально помещенных в полость катода. Изменяя материал катода или состав помещаемого в полость катода вещества, можно получать спекхры испускания различных атомов. Обычно каждая лампа для атомно-абсорбционного анализа дает спектр испускания атомов какого-либо одного элемента (табл. 3). Поэтому для определения нескольких элементов в пробе необходимо иметь набор ламп на различные элементы, поскольку лампы, позволяющие определять сразу несколько элементов, пока не нашли широкого применения в практике атомно-абсорбционного анализа. Таким образом, несколько элементов определяют при последовательной замене ламп, используя их поочередно в качестве источников излучения. [c.36]

    Рис 4 I. Электронные абсорбционные спектры индивидуальных утле-водородов (а) и многокомпонентных систем (6)  [c.65]

    Принципиальная схема атомно-абсорбционного спектрофотометра показана на рис. 3.35. Свет от источника резонансного излучения пропускают через пламя, в которое впрыскивается мелкодисперсный аэрозоль раствора пробы. Излучение резонансной линии выделяют из спектра с помощью монохроматора и направляют на фотоэлектрический детектор (обычно фотоумножитель). Выходной сигнал детектора после усиления регистрируют гальванометром, цифровым вольтметром или записывают в аналоговой форме на ленте пишущего потенциометра. Для увеличения производительности спектрофотометры снабжаются устройствами цифропечати и автоматической подачи образцов. [c.144]

    В настоящее время в качестве источников света для атомно-абсорбционного анализа наиболее часто используют различные газоразрядные источники, спектр испускания которых совпадает со спектром определяемого атома. В этом случае не представляет труда получить в спектре испускания линии с шириной, меньшей ширины спектральных линий определяемых атомов, поскольку атомы, как правило, находятся при высоких температурах, что приводит к уширению их энергетических уровней и соответственно спектральных линий. При работе выбирают в спектре испускания одну из линий, обусловленную переходом на основной уровень (резонансную линию), и определяют ослабление ее интенсивности при прохождении излучения через слой поглощающих атомов. Очевидно, что поглощать данную спектральную линию будут атомы, находящиеся в оснавном состоянии. [c.35]


Библиография для Спектр абсорбционные: [c.372]   
Смотреть страницы где упоминается термин Спектр абсорбционные: [c.241]    [c.20]    [c.37]    [c.312]    [c.448]    [c.449]    [c.76]    [c.83]    [c.96]    [c.142]    [c.143]   
Практикум по физической химии изд3 (1964) -- [ c.70 ]

Практикум по физической химии Изд 3 (1964) -- [ c.70 ]

Практикум по физической химии Изд 4 (1975) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбционная и эмиссионная спектроскопия г в УФ- и видимой областях спектра

Абсорбционная спектроскопия. Анализ ксилола посредством инфракрасного спектра поглощения

Абсорбционная спектроскопия. Ультрафиолетовый спектр органического соединения

Абсорбционные атомные спектр

Абсорбционные спектры аминокисло

Абсорбционный анализ в видимой области спектра

Абсорбционный анализ газовых смесей в инфракрасной области спектра

Абсорбционный анализ газовых смесей в ультрафиолетовой области спектра

Абсорбционный анализ спектра

Абсорбционный инфракрасной области спектр

Абсорбционный спектр в ка объему

Абсорбционный спектр в ка объему во время сгорания

Абсорбционный спектр в ка объему мере сгорания. Внутреннего сгорания двига

Молекулярный абсорбционный спектральный анализ (спектрофотометрия) в ультрафиолетовой и видимой области спектра (185—760 нм)

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ Абсорбционный спектр в камере сгорания

Спектр абсорбционный атома

Спектр абсорбционный поглощения

Спектры поглощения и окраска Абсорбционный анализ

Талалаев, Н. П. Иванов. О проведении атомно-абсорбционного анализа с использованием фотографического способа регистрации и источников линейчатого спектра

Талалаев. Абсорбционный спектр палладия

Теоретические основы абсорбционной спектроскопии Спектры поглощения

Целлюлоза спектры. инфракрасные абсорбционные поглощения

Ширина линий в атомно-абсорбционных и эмиссионных спектрах



© 2025 chem21.info Реклама на сайте