Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные результаты исследования локально-однородной задачи

    ОСНОВНЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ЛОКАЛЬНО-ОДНОРОДНОЙ ЗАДАЧИ [c.39]

    Данный параграф посвящен более строгому (чем это было сделано в 3.5) математическому исследованию уравнения для плотности вероятностей концентрации в свободных турбулентных течениях. При анализе используется уточненная аппроксимация условно осредненной скорости (и>2 в области больших амплитуд пульсаций концентрации (3.18). Обсуждаются такие общие качественные свойства уравнения, как особые точки, существование автомодельного решения, постановка краевой задачи. Отмечаются имеющиеся аналогии со случаем статистически однородного поля концентрации, рассмотренного в 3.4. Важную роль в проведенном анализе играют существенно нелокальные свойства уравнения. Показано, что условие разрешимости краевой задачи позволяет найти две неизвестные функции, входящие в замыкающие соотношения. В данном, а также в следующем параграфе (в нем приведено численное решение сформулированной краевой задачи) преследуются две главные цели. Первая — дать обоснование приближенного метода исследования уравнения, описанного в 3.5. Вторая цель - показать на примере уравнения для плотности вероятностей концентрации, что с развитием направления, предложенного в книге, могут быть связаны вполне определенные перспективы построения замкнутой теории турбулентности. По крайней мере в настоящее время удается уменьшить количество произвольных функций по сравнению с полуэмпирическими теориями для одноточечных моментов. Заметим, что проведенное исследование сопряжено с большим количеством достаточно громоздких выкладок, а также с использованием ряда неформальных качественных соображений. Материал этого параграфа рассчитан в nepByiQ очередь на такого читателя, которого заинтересует весьма нестандартная математическая структура уравнений для плотностей вероятностей, полученных с помощью теории локально однородной и изотропной турбулентности Колмогорова -Обухова, и те возможности, которые предоставляют такие уравнения (или уравнения с похожими свойствами) в решении проблемы замьжания в теории турбулентности. Остальные читатели могут этот параграф пропустить и сразу перейти к 3.7, в котором приведено численное решение автомодельной задачи и в краткой форме перечислены основные результаты исследования уравнения. [c.104]



Смотреть главы в:

Возникновение турбулентности -> Основные результаты исследования локально-однородной задачи




ПОИСК





Смотрите так же термины и статьи:

Задачи исследования

Исследование основное

Локальная задача

Локальность

Основные результаты



© 2025 chem21.info Реклама на сайте