Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биохимия направления развития

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Иммуноферментный анализ, возникший более пятнадцати лет назад на пересечении иммунохимии и инженерной энзимо-логии, стал в настоящее время одним из распространенных методов исследования. Явные преимущества нового метода, к которым относится простота выполнения, доступность и стабильность реагентов, экспрессность и возможность автоматизации для проведения массовых анализов, обеспечили его прочное положение в клинической биохимии, при диагностике заболеваний растений и животных, в научных исследованиях. Благодаря успехам биотехнологии иммуноферментный анализ далее интенсивно развивался, поскольку с помощью генной инженерии были получены в высокоочищенном виде малодоступные антигены, а также ферменты-маркеры и их конъюгаты с антигенами, а с помощью клеточной инженерии — моноклональные антитела с заданной специфичностью и аффинностью. Новые направления развития иммуноферментного анализа связаны с использованием различных методов регуляции ферментативной активности при детектировании комплексов антиген — антитело. Именно этим вопросам и посвящена предлагаемая книга. [c.5]

    ХИМИЯ — одна из областей естествознания, наука о химических элементах, их соединениях и химических превращениях, возникающих в результате химических реакций. Современная X. подразделяется на четыре основных направления неорганическую, органическую, физическую и аналитическую химию. Кроме этого, в связи с развитием науки X. возник ряд подразделов коллоидная X., X. мономеров и полимеров, X. редких элементов, X. природных соединений, X. поверхностно-активных веществ, X. комплексных соединений и др. Современная X. тесно переплетается с другими науками, в результате чего воз 1И-кают смежные области науки биохимия, геохимия, агрохимия, космохимия, химическая физика, нефтехимия и другие, которые дополняют, расширяют и развивают применение химических знаний в различных отраслях деятельности человека. X. находится в тесном единстве с практикой, она развивалась и развивается в связи с практическими потребностями человека. Развитие химической науки и техники привело к интенсивному росту химической промышленности, которая имеет важное значение в техническом прогрессе всех отраслей народного хозяйства. [c.275]

    В настоящее время перед биологической наукой поставлена задача — обеспечить преимущественное развитие научных исследований по следующим основным направлениям разработка методов генетической и клеточной инженерии, создание на их основе новых процессов для биотехнологических производств с целью получения принципиально новых пород животных, форм растений с ценными признаками разработка новых методов и средств диагностики, лечения и профилактики наследственных заболеваний разработка научных основ инженерной энзимологии разработка и внедрение новых биокатализаторов (в том числе иммобилизованных) и оптимизация с их помощью биотехнологических процессов получения химических и пищевых продуктов исследования структуры и функции биомолекул клетки изучение молекулярных и клеточных основ иммунологии, а также генетики микроорганизмов и вирусов, вызывающих заболевания человека и животных, создание методов и средств диагностики, лечения и профилактики этих заболеваний исследования молекулярно-биологиче-ских механизмов канцерогенеза, природы онкогенов и онкобелков, их роли в малигнизации клеток и создание на этой основе методов диагностики и лечения опухолевых заболеваний человека исследования проблем биоэнергетики, питания, психики и молекулярных основ памяти и деятельности мозга. Таким образом, можно наметить следующие главные направления развития исследований в области биологической химии на ближайшую и отдаленную перспективу, так называемые горизонты биохимии  [c.18]


    Органические объекты имеют много хозяев . Прежде всего, это химическая и нефтехимическая промышленность, производящие продукты основного органического синтеза, включая спирты и кислоты, полимеры (в том числе пластмассы, каучуки, химические волокна), лаки, пестициды, красители, реактивы. В ведении фармацевтической промышленности — лекарственные препараты. Сельское хозяйство имеет дело с анализом почв, растений, животных тканей, пищевая промышленность, естественно, — с пищевыми продуктами. Гидрометеорологическая служба заботится об определении органических веществ в водах и воздухе. Анализ разнообразных органических веществ нужен науке органической химии, биохимии, физиологии, медицине. Комплекс биологических наук будет оказывать на органический анализ все возрастающее влияние, ставить все более сложные задачи и во многом предопределять направление развития. [c.132]

    При отборе материала для четвертого издания учебника учитывалось, как и ранее, значение определенных разделов биохимии для формирования отчетливых представлений по общей биохимии, а также то, что развитие самой биохимии в отдельных ее частях идет неравномерно за последнее время произошли огромные сдвиги в изучении строения и обмена некоторых групп органических соединений. Поэтому в книге уделено много внимания строению белков, нуклеиновых кислот и ферментов, рассмотрены особенности белковых тел как носителей жизни, обращено внимание на принцип комплементарности в строении нуклеиновых кислот и его значение в матричном биосинтезе природных полимеров, изложены современные представления о биологическом окислений, регуляции обмена веществ и взаимосвязи обмена соединений различных классов. Там, где это уместно, освещены вопросы использования достижений биохимии в развитии новых направлений в биологических науках (химическая систематика, молекулярные основы наследственности, изменчивости и эволюции и др.), медицине (наследственные болезни, биохимическая диагностика, стратегия химиотерапии, взаимодействие вирусов и клеток и т. п.), сельском хозяйстве (биохимическая паспортизация генетического фонда, экологическая биохимия, клеточная инженерия и др.) и промышленном производстве (инженерная энзимология, техническая биохимия, фармацевтическая химия, микробиологический синтез и т. п.). [c.3]

    Новые направления развития отечественной биохимии. Значительную роль в развитии биохимической науки в нашей стране сыграли научные программы и организационные мероприятия, а также решение ряда материально-технических вопросов, позволившие не только обеспечить существенное продвижение [c.12]

    В этом заложена причина особой перспективности будущего развития тех сторон химии фосфора, которые опираются не на учение о равновесиях и не на теорию устойчивых молекулярных структур, а на химическую кинетику и учение о тонкостях элементарных химических процессов. Следует надеяться, что развитие биохимии фосфора именно в этих направлениях даст науке много неожиданного и фундаментально важного ведь до сих пор в этих важнейших разделах химии пока все почти неясно. Тем заманчивее для научного творчества вступление на путь исследования в области химической целины. При этом можно рассчитывать на то, что биохимия своими разнообразными явлениями укажет задачи, выявит новые и важные тонкие особенности и облегчит нахождение путей для понимания того, что до сих пор в мире атомов осталось незамеченным, несмотря на свое, может быть, весьма принципиальное значение. [c.368]

    Специфичны также условия очистки сточных вод, требующие применения нескольких методов в одной технологической схеме. Комплексный характер методов обработки воды, разрабатываемых на основе достижений физической химии, биохимии, гидравлики и общей теории процессов и аппаратов, нуждается в едином подходе при решении задач, связанных с технологией кондиционирования воды. Возникла острая необходимость в разработке теоретической базы новой отрасли науки — химии и технологии обработки воды, которая должна опираться на научно-обоснованную и практически оправдывающую себя систематизацию примесей и загрязнений воды. Особое значение в связи с этим приобретает созданная автором классификация, основанная на фазово-дисперсном состоянии примесей воды. Она явилась плодотворной рабочей гипотезой, позволившей с единых позиций оценить технологические процессы водоподготовки, найти решения, обеспечивающие эффективную очистку воды в соответствии с современными требованиями к ее качеству, и указать направления дальнейшего развития этой отрасли науки. [c.8]

    Регуляция жизнедеятельности сложного многоклеточного организма в огромной степени зависит от химических сигналов, передаваемых от одних клеток к другим. Один из основных способов коммуникации — это секреция гормонов в кровоток. Значительно менее изучен процесс химического обмена информацией через межклеточные контакты (гл. 1, разд. Е, 3, в). Этот процесс лучше всего исследован на нервных клетках, и в настоящее время нейрохимия стала одним из основных направлений биохимии. Коммуникация между клетками играет большую роль в эмбриональном развитии и в дифференцировке тканей. Правда, рост и развитие клеток регулируются не только внешними, но и внутренними факторами последние определяются программами развития, закодированными в ДНК. В настоящей главе мы рассмотрим кратко как упомянутые вопросы, так и коммуникацию между организмами, т. е. биохимию экологических взаимосвязей. [c.316]


    Вместе с тем, по мнению авторов, становится все более очевидной необходимость введения курса биохимии в систему химического образования. Это важно как с чисто прагматической точки зрения, так и для формирования более цельного мировоззрения специалистов-химиков. Направленный синтез биологических веществ — лекарственных препаратов, гербицидов для борьбы с сорняками в сельском хозяйстве, инсектицидов для истребления вредных насекомых, развитие методов анализа, имеющих диагностическую значимость, изучение природы воздействия токсических веществ на человека и другие живые организмы — все это и многое другое требует понимания механизма взаимодействия химических веществ с биологическими системами. Без этого химические исследования имеют в основном эмпирический характер. В то же время биохимические процессы все в большей мере начинают использоваться для осуществления химических превращений вне живых организмов, и знание возможностей биохимии существенно обогащает арсенал подходов, с помощью которых химик может решать стоящие перед ним проблемы. Особенно существенно для химика знание основ биологического катализа как наиболее совершенного класса каталитических процессов, принципы которого могут открыть новую страницу в развитии науки о катализе в целом. Широко обсуждается и в ряде случаев уже реализуется использование сложных биохимических структур в качестве биосенсоров для аналитических целей и в перспективе для развития принципиально новой базы для электроники. [c.8]

    Не менее важным направлением стратегического наступления химической кинетики становятся биохимия и разнообразные биологические процессы, включая проблемы изучения динамики (кинетики) биохимических сдвигов при развитии и нормализации тех или иных патологических состояний. В сферу кинетического изучения включаются быстрые первичные элементарные стадии лучевого поражения биологических объектов и первичные эффекты канцерогенных воздействий. Химическая кинетика привлекается для изучения метаболизма лекарственных препаратов в живых организмах. Эффекты воздействия физических и химических агентов на ДНК и связь этих эффектов с мутагенными свойствами изучаемых агентов все больше и больше начинают описываться при помощи кинетических констант. [c.6]

    Содержаиие понятий биохимия и гбиоорганиче-ская химия в известной степени условно. Здесь говорится о них лишь с единственной целью — проследить пути развития исследований, направленных на выяснение как субстанционального состава растительных и животных тканей, так и химических процессов, происходящих в организме. Такие исследования осуществлялись и чистыми химиками-органиками, и биохимиками, и даже медиками. У каждой из этих трех групп специалистов были свои цели. Хи-миков-органиков увлекали перспективы синтеза все более сложных веществ путем конструирования их молекул с целью показа возможностей искусственного получения аналогов органических соединений, образующихся в живых организмах. Биологи преследовали цели изучения субстратной и функциональной основ живого. Медики стремились выяснить границы между нормой и патологией в организмах. Объединяющим же началом всех этих исследований является не столько объект — живой организм, сколько аналитический путь исследования — от живого организма к изучению веществ, а затем и процессов, его составляющих. Здесь важно подчеркнуть и еще одно обстоятельство, связанное с темой настоящей книги, а именно появление на определенной ступени развития биохимии идеи о ведущей роли ферментов, а затем еще шире биорегуляторов, н процессе жизнедеятельности. В конечном итоге эта руководящая [c.174]

    Основное направление научных исследований — развитие химии растительных веществ. Опубликовал (1847) первый отечественный учебник биохимии — Курс физиологической химии . Исследовал так называемые студенистые растительные вещества (пектиновые вещества) и их роль в жизнедеятельности организмов. Первым в России стал пропагандировать унитарную теорию О. Лорана и Ш. Ф. Жерара. Выступил с резкой критикой обобщений Я. Я. Берцелиуса в области катализа, в особенности понятия жизненная сила , в которой усматривал проявление витализма. Па многих примерах доказал (1852), что каталитические явления — это обычные химические реакции взаимодействия между реагентами и агентами с образованием и распадом промежуточных соединений. Работал также в области теоретической термохимии. Под влиянием идей Гесса на основе определений теплот растворения солей сделал вывод (1843), что количество теплоты, выделяемой при растворении соли в воде, зависит от силы сродства между ними. [c.543]

    Монография типа учебника для высших химических учебных заведений. Один из ее авторов, проф. Дж. Робертс, не только принадлежит к числу наиболее выдающихся американских химиков, но и является опытнейшим педагогом. Книга написана с большим педагогическим мастерством и выгодно отличается от имеюш ихся учебников по органической химии двумя особенностями в ней обстоятельно и ярко освещены возможности и методы применения различных видов спектроскопии к проблемам органической химии и приведено много упражнений, направленных на развитие у студентов навыков самостоятельного мышления и творческого усвоения материала Цель книги — подготовить химика-органика, свободно ориентирующегося во всех областях органической химии, лежащих между химической физикой и биохимией. [c.4]

    Автор отдает себе отчет в том, что при современных темпах развития биохимии создание пособия, которое бы удовлетворяло требованиям, предъявляемым к учебной литературе, является крайне сложной задачей. Не говоря уже о том, что в настоящее время очень трудно следить за развитием всех основных направлений в биохимии, даже за. время подготовки рукописи к печати некоторые факты и теории могут устареть или быть опровергнутыми. Автор будет очень благодарен за все критические замечания и советы, которые помогут дальнейшей работе над совершенствованием этого курса. [c.4]

    По мере развития биохимии эта серия будет охватывать все большее число разнообразных направлений — от таких, где преобладает химический аспект, до преимущественно биологических. [c.6]

    Бурное развитие наших знаний, происшедшее за последние годы в области изучения нуклеиновых кислот, особенно в связи с проблемой процессов биосинтеза и кодирования, а также в связи с развитием представления о РНК-посреднике, привело к необходимости полностью переработать почти половину книги остальная часть подверглась существенной обработке, а устаревший материал и вовсе был исключен. Таким образом, настоящее, пятое, издание сильно отличается от четвертого и имеет весьма мало общего с первым изданием. Однако заглавие сохранилось без изменения. В последнее время стало модным употреблять термин молекулярная биология для обозначения биохимического направления в изучении таких макромолекул, как нуклеиновые кислоты и белки. Однако мы оставили в заглавии термин биохимия , который и означает изучение на молекулярном и атомном уровнях организации и функции биологических систем . [c.7]

    Возможные перспективные направления развития препаративной биохимии рестриктаз [c.160]

    Развитие классической аналитической химии шло в направлении разработки новых органических реагентов для селективного обнаружения и количественного определения элементов, совершенствования методик анализа и внедрения математических методов обработки результатов анализа. Начиная с середины прошлого века, сначала для целей идентификации, а затем и для количественных определений в аналитической химии стали использовать инструментальные методы анализа, обладающие преимуществами в чувствительности, скорости и точности выполнения анализа, необходимые в научных исследованиях и производственном контроле. Развитие инструментальных методов привело к появлению новых направлений (например, аналитическая биохимия, хроматография, радиоаналитическая химия и т. п.). В эпоху научно-технической революции появление принципиально новой методологии — моделирования, алгоритмизации, системного подхода — привело к перестройке и в аналитической химии, которую теперь квалифицируют как науку, занимающуюся получением информации о химическом составе вещественных систем. Полная химическая информация о качественном и количественном составе, получаемая в максимально короткие сроки на минимальном количестве исследуемого объекта, требуется практически во всех отраслях науки, техники и промышленности. Это стало возможным в результате развития в XX в. компьютерной техники и автоматизации производства. [c.6]

    Успешное развитие химии в целом как интегральной науки невозможно без гармоничного развития частных (дифференцированных) химических наук, но не изолированных, а взаимно дополняющих и обогащающих друг друга. В этом смысле надо признать, что классическая химия в последние годы замегно отстает в своем развитии от некоторых естественно-химических наук, таких как геохимия, биохимия, биофизическая химия и др. Наиболее важный их вывод, который следует перенять науке о свойствах вещества - это то, что существуют чрезвычайно простые и универсальные законы функционирования и развития как живой, так и неживой природы, законы, общие для физических, химических и биологических процессов. Установлено, что поведение химических и биологических субстратов генетически строго закодировано. Используя эти представления, вслед за кибернетикой появилась (1980 г. Г. Хакен [31, 32]) новая интегральная междисциплинарная наука, получившая название синергетика - наука о самоорганизации сложных систем, устойчивости и распаде структур различной природы. Одновременно с синергетикой Б. Мандельбротом (1980 г. [33]) была предложена теория фракталов - структур, состоящих из частей, подобных целому и обладающих дробной мерностью. Благодаря этой теории появилась возможность математически описывать системы необычной сложности, которые считались хаотическими [34]. Было установлено, что практически все окружающие нас объекты в том или ином аспекте проявляют фрактальные свойства. Следствием философского обобщения этой теории явилась идея единства материального мира, о том, что мир зиждется на неких законах, и все процессы мира имеют единое происхождение и аналогичные законы поведения. Исключительно прав А. Пуанкаре, утверждая, что наука развивается по направлению к единству и простоте . [c.16]

    Важная роль аминокислот в процессах жизнедеятельности с давних пор стимулировала исследования по проведению поиска лекарственных средств как среди природных аминокислот, так и их синтетических аналогов. В результате широких фундаментальных исследований такие природные аминокислоты, как глутаминовая кислота (I), метионин, гистидин, цистеин, а также препараты, являющиеся смесью аминокислот, получаемые из гидролизатов крови и других биологических субстратов, прочно вошли в арсенал лекарственных средств и активно используются в терапии при лечении больных с заболеваниями различной этиологии. Существенное влияние в проблеме направленного поиска новых лекарственных средств среди аминокислот и их производных оказало развитие исследований по биохимии клетки и организма в норме и патологии. Так, изучение метаболических процессов, протекающих в нервных тканях, показало, что первичным продуктом ферментативного расщепления I является у Зминомасляная кислота (II). [c.7]

    Исторически М, б. сформировалась в ходе развития направлений биохи.ши, изучающих биополимеры. В то время как биохимия исследует гл. обр. обмен веществ и биоэнергетику, М. б, уделяет главное внимание изучению способа хранения наследств, информации, механизма ее передачи дочерним клеткам и реализации этой информащш. М.6.-пограничная наука, возникшая на границе биохимии, био-органической химии, биофизики, орг. химии, щггологии и генетики. Формальной датой возникновения М, б. считают 1953, когда Дж, Уотсон и Ф. Крик установили структуру ДНК и высказали подтвердившееся позже предположение о механизме ее репликации (удвоении), лежащем в основе наследственности. Таким образом были увязаны ф-ции этого биополимера (тот факт, что ДНК-фактор наследствен- [c.109]

    Современные технологии переработки сельскохозяйственного сырья и изготовления продуктов питания, как известно, базируются на достижениях физической химии, биофизики, биохимии, микробиологии, биотехнологии, механики, теплотехники, электроники, экологии, системологии и других научных направлений. Без использования достижений науки в этих областях невозможно перейти на новую ступень развития промышленности, когда требуется развивать сеть их информационного обеспечения с применением ЭВМ и микропроцессорной техники, создавать автоматизированные производства. [c.1324]

    Молекулярная биология занимает -особое место в развитии науки второй половины XX в. Именно ее рождение и последующий бурный рост выдвинули биологию в целом в ряды самых передовых и популярных наук, а XX в. стали иногда называть веком биологии . Возникнув как отрасль биохимии, молекулярная биология получила мощное развитие благодаря внедрению в нее вдей и методов генетики и физики. Открытый и сформулированный в 1953 г. принцип комплементарности в нуклеиновых кислотах, объяснив особенности структуры этих макромолекуляр-ных соединений и обладая предсказательной силой в отношении их функций, лег в основу нового направления науки. Огромное научное и методологическое значение молекулярной биологии состояло в том, что наиболее фундаментальное и таинственное свойство живой материи — воспроизведение себе подобного — оказалось возможным объяснить на молекулярном уровне. Молекулярная структура вещества, в котором записана (закодирована) генетическая информация, механизмы воспроизведения генетической информации в поколениях клеток и организмов и механизмы реализации генетической информации через биосинтез белков —вот три направления, по которым развивалась эта наука и где были сделаны решающие успехи. Кроме того, структура и механизмы функционирования белков стали также предметом молекулярной биологии. [c.3]

    Читатель постоянно снабжается новыми учебными пособиями по химии. Причем такие области, как, например, общая биохимия, теоретическая органическая химия (и прежде всего ее направление, изучающее механизмы органических реакций) и химическая термодинамика, хорошо обеспечены превосходными книгами, многие из которых после переработки и дополнений переиздаются это позволяет учесть все последние достижения. Однако другие области химии, особенно те из них, которые изучаются как спецпредметы студентами выпускных курсов высших учебных заведений, страдают от фактического отсутствия современных учебников. Это относится прежде всего к быстро прогрессирующим областям. Авторами учебников по таким спецпредметам обычно должны быть ученые, которые непосредственно вносят вклад в исследования, продвигающие данную область. Не всегда легко убедить таких людей выделить время для распространения накопленных ими знаний. Наша цель — выявить области химии, развитие которых опережает содержание уже существующих учебников, найти специалистов по этим областям и убедить их написать не очень пространные, но содержательные пособия-введения в соответствующие области. В некоторых случаях появление таких пособий, в свою Очередь, может оказать стимулирующее воздействие на развитие новых направлений. [c.7]

    Развитие биологической химии привело к созданию новых отраслей науки, методологически и методически тесно связанных с биохимией. Так, быстрыми темпами развивается молекулярная биология, генная и клеточная инженерия. В настоящее время достижимыми представляются задачи по синтезу генетического материала и встраиванию его в наследственный аппарат клетки. С помощью микробов возможен синтез белков и регуляторов, характерных для человека, таких, как инсулин или интерферон. Фундаментальная информация о химической природе компонентов биологической системы обеспечивает направленное биомедицинское влияние на несколько уровней системы 1) принципиально важным явилось создание веществ, пагубно действующих на патогенные микробы, способные развиваться в организме человека. Получение антибиотиков, выяснение механизмов их действия, разработка методов их синтеза и модификации позволило побороть многие болезни, в том числе и инфекционного характера. Наиболее ярким примером может служить создание целой серии антибиотиков пенициллинового ряда. Пенициллин и его аналоги, встраиваясь в стенку бактерий, предотвращают их рост и иочти не влияют на клетки организма человека. Многие антибиотики ингибирующе действуют на процесс биосинтеза белка в бактери- [c.198]

    В настоящее время известны многие другие примеры реакций нитроксилов, в которых сохраняется структура самого нитро-ксильного радикала. Открытие и исследование реакций, в которых сохраняется радикальный центр, позволили создать принципиально новый метод исследования, получивший название метода спиновых меток (см. 14.4.2). Он широко используется в современной молекулярной биологии и биохимии. Развитие метода спиновых ловушек, стимулированного исследованиями X. Мак-Коннела, идет по двум направлениям. Одно из них связано с синтезом спин-меченых биомолекул — пептвдов, белков, нуклеиновых кислот, сахаров и т.д. Второе направление заключается в синтезе парамагнитных аналогов и моделей биологически акттных соединений, отличающихся от них только наличием радикального центра. Зто дает уникальную возможность установить метаболизм биологически активных соединений. [c.531]

    Успехи в биохимии и биофизике последних лет также тесно связаны с развитием краун-соединений. Примером может служить валиномицин - антибиотик, который в 1955 г. был выделен из гadioЬa illi. Как установил в 1963 г. Шемякин с сотр. [ 47], структура валиномицина представляет собой циклический додекадепсипептид (52). Механизм действия этого антибиотика был исследован после того, как Прессман и Моор [ 48] отметили изменение активности митохондрии печени крысы под действием ионов щелочных металлов. Исследование показало, что валиномиЦин избирательно образовывал комплекс с катионом калия, который активно переносился в направлении, противоположном концентрационному градиенту. Добавление валиномицина к митохондриальной фракции приводило к расходованию энергии. Эго явилось важным открытием в понимании роли N3 -К -АТРазы в биологической мем- [c.26]

    Второе издание учебника по биологической химии, как и первое, написано по материалам лекций, которые авторы на протяжении ряда лет читают на биологическом и химическом отделениях факультета естественных наук Новосибирского государственного университета. Хотя с момента вы.хода первого издания прошло не очень много времени, учебник потребовал некоторой доработки в связи с бурным развитием ряда областей биохимии и смежных дисциплин. Достаточно упомянуть такие понятия, как рибозимы — ферменты, построенные из молекул РНК и не содержащие белка, как селекция нуклеиновых кислот in vitro, превратившаяся в могучий инструмент исследования взаимодействий нуклеиновых кислот между собой и с другими лигандами, как интенсивное развитие анти-смысловой технологии в качестве наиболее направленного подхода к борьбе с вирусными и онкологическими заболеваниями, понятие об апаптбзе — запрограммированной клеточной смерти, по-виДимому, являющейся важным путем регуляции клеточных делений и, в частности, предотвращения малигнизации клеток. Без представления этих понятий и ознакомления с новыми революционизирующими исследования методами невозможно полноценное биохимическое образование. [c.6]

    Вне всякого сомнения радионуклидные методы диагностики и лечения прочно будут удерживать своё место среди других медицинских процедур. Развитие радиофармацевтики напрямую связано с развитием новых фундаментальных направлений в радиохимии, биохимии, синтезе меченых соединений, аналитической химии и др., которые, в свою очередь, обеспечат создание новых высоких технологий производства и применения радионуклидных препаратов. [c.412]

    Несмотря на то, что наука не обладает почти никакими палеонтологическими сведениями об эволюции органических пигментов, мы все же можем на основании достоверных данных сравнительной биохимии и физиологии судить в какой-то мере о направлении их развития. Вопросов, связанных с эволю цией гемоглобина, касались многие исследователи, но попытка представить схему этого процесса впервые была предпринята X. С. Коштоянцем в его книге Основы сравнительной [c.195]

    Б е. I п ц е р В. А. Химические превращения в мышце. Медгиз, М.—Л., 1940. Иванов И. И. Химическая динамика мышц и подвиисных клеток. Медгиз, М., 1950 Некоторые направления в развитии мышечной биохимии. Успехи биологической химии. Т, П1, 1958. Актуальные вопросы современной биохимии, т. 1, 1959. [c.433]

    Теоретическая химия проникает во все области химии, и в основных химических дисциплинах постепенно возникают самостоятельные теоретические разделы. Сейчас считаются естественными такие понятия, как теоретическая неорганическая или органическая химия, теоретическая биохимия или фармакология. Основным орудием теоретической химии в настоящее время являются квантовохимические методы. Численные результаты, полученные этими методами, позволяют оценивать качество математических моделей, используемых для описания экспериментально наблюдаемых явлений. Численное решение уравнения Шрёдингера стало самым обычным методом установления взаимосвязей между химической структурой соединения и присущими ему свойствами. Быстрое развитие вычислительной квантовой химии обусловлено прежде всего замечательными успехами вычислительной техники. Методическая же основа квантовой химии известна уже десятилетия, и, согласно недавней оценке, одного из основателей современ-ной теоретической химии Вильсона, за последние двадцать" лет в этой области было очень мало действительно новых идей [1]. Несмотря на то что численные квантовохимические методы носят принципиально приближенный характер, их использование наравне с экспериментальными методами стало обычным способом получения информации об изучаемой проблеме. Современная теоретическая химия не ограничивается вычислительными методами, в основе которых лежит классическая математика (главным образом анализ). Предпринимаются попытки использовать математику как теорию логических структур для того, чтобы получить непосредственное представление о внутренней логической структуре химической задачи (без промежуточных вычислений). Это направление, формирующееся на почве теоретической химии, получило название алгебраической или математической химии. [c.11]

    Современное развитие К. х. характеризуется разнообразием направлений. Широкое применение электронно-вычислительной техники позволяет производить все более точные расчеты электронной структуры небольших (прежде всего, двухатомных) молекул, приближая уровень точности теоретич. расчетов к экспериментальному уровню. В случае сложных молекул и комплексных соединений ширится применение полуэмпирич. расчетных методов, а такше качественно-описательных методов рассмотрения электронной структуры наряду с различными областями физич. химии эти методы находят все более широкое применение при исследовании электронных аспектов биохимии. Развитие радиоспектроскопич. методов псследования строения молекул сопровождается теоретич. расчетами ряда тонких характеристик электронной структуры (расчетами магнитного экранирования ядер, квадрупольной связи ядер с электронной оболочкой, спин-спинового взаимодействия ядер через электронную оболочку, распределения плотности неспаренного электронного спина в радикалах, взаимодействия электронного спина с ядерными спинами и т. д.). [c.267]

    Химиков-оргаииков давно привлекала идея выработки числовых индексов реакционной способности (ИРС), основанных на том пли ином физико-химическом параметре реагирующего соединения. С развитием квантовой химии и прежде всего метода ЛКАО МО эта идея стала активно претворяться в жизнь. Предложено множество ИРС, основанных на расчете энергетп-ческих характеристик и электронного распределения молекул, в том числе эффективные заряды атомов, порядки связей, свободные валентности, энергии локализации, энергии граничных орбиталей, плотность электронов на граничных орбиталях, су-перделокализуемость и др. Интенсивные исследования в этом направлении проводились на протяжении 50—70-х годов, причем особое внимание было обращено на гетероароматические соединения. Последнее объясняется двумя обстоятельствами. Во-первых, гетероциклы — очень удобный объект для проверки пригодности ИРС из-за наличия в них различных типов гетероатомов с широко варьирующейся электроотрицательностью и ярко выраженным влиянием на я-электронное распределение. Во-вторых, многие азотистые гетероциклы играют важную роль в биохимии и перспектива пролить свет на ее природу с позиций квантовой химии весьма заманчива. [c.191]


Смотреть страницы где упоминается термин Биохимия направления развития: [c.180]    [c.1152]    [c.78]    [c.4]    [c.17]    [c.445]    [c.219]    [c.92]   
Биологическая химия Изд.3 (1998) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Биохимия



© 2025 chem21.info Реклама на сайте