Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности строения бактерий и вирусов

    ОСОБЕННОСТИ СТРОЕНИЯ БАКТЕРИЙ И ВИРУСОВ [c.135]

    В отличие от вирусов и бактерий дрожжи не перезаряжаются даже при значительных концентрациях Al " , Ti [20]. Очевидно, это объясняется особенностями строения и химического состава клеточной поверхности. Аналогичные данные известны для капсули-рованных бактериальных культур. [c.20]

    Возбудители бактериальных или вирусных заболеваний в процессе своей жизнедеятельности в организме хозяина оказываются в той или иной ситуации во внеклеточной среде. Пребывание в жидкостях организма может быть более длительным — в случае с внеклеточными патогенами, или более коротким — при поражении хозяина внутриклеточными бактериями или вирусами, но оно обязательно представлено. При нормальном функционировании иммунной системы патогены и их токсины, оказавшиеся вне клеток хозяина, подвергаются действию антител — эффекторных молекул, продуцируемых В-лимфоцитами. Особенности строения [c.237]


    Объектами изучения предмета Защита растении являются вредные насекомые, грызуны, клещи, нематоды, слизни, вирусы, микоплазмы, бактерии, актиномицеты, грибы, цветковые паразиты и сорняки. В этом курсе изучаются особенности их строения и развития, взаимоотношения со средой, вредоносность и типы повреждений растений, включая экономическую оценку потерь урожая. [c.3]

    Кольцеобразное строение хромосом, обнаруженное у бактерий, сделало вероятной гипотезу, что и молекула ДНК в некоторых случаях принимает кольцевидную форму. Изучение электронномикроскопических фотографий привело к выводу, что ДНК вирусов имеет замкнутое строение ДНК кишечной палочки обладает той же особенностью. По-видимому, замыкание ДНК в кольце есть средство задержать репликацию. Когда же репликация должна начаться в какой-то точке молекулы ДНК, происходит ее размыкание, и, следовательно, возможность для ДНК существовать в линейной и циклической формах представляет еще один механизм регулирования метаболических процессов. Этот мало изученный механизм основан на физических и геометрических возможностях, которыми обладают макромолекулы. [c.211]

    Для большинства бактерий и архей можно считать справедливым утверждение о том, что это маленькие, просто устроенные организмы, имеющие универсальное строение. С другой стороны, мир микробов, населяющих нашу планету, чрезвычайно разнообразен. Его представители различаются морфологически, а также физиологическими и биохимическими свойствами. По принципу клеточной организации все микроорганизмы могут быть разделены на два типа — прокариоты и эукариоты. У прокариот ядерный аппарат, называемый часто нуклеоидом, представлен, в большинстве случаев, кольцевой молекулой ДНК, соответствующей одной хромосоме. У эукариот ядро содержит набор хромосом и отделено от цитоплазмы мембраной. Различия в организации ядерного аппарата коррелируют с рядом других особенностей эу- и прокариот (табл. 1). Первоначально к микроорганизмам относили и вирусы, однако в настоящее время их чаще рассматривают как особые формы жизни, не имеющие клеточного строения и содержащие, в отличие от про- и эукариот, лишь один тип нуклеиновых кислот (ДНК или РНК). [c.18]

    Гены, выбранные нами в качестве иллюстрации, происходят из разных эукариотических организмов. Большой интерес представляют гены дрожжей, в основном Sa haromy es erevisiae. Во-первых, они обладают некоторыми свойствами, характерными для генов бактерий, растений, беспозвоночных и позвоночных. Во-вторых, связывающиеся с дрожжевой ДНК белки, ответственные за многие процессы регуляции транскрипции у дрожжей, могут быть заменены белками других организмов или работают совместно с соответствующими сигналами и белками из других организмов, в том числе млекопитающих. В-третьих, глубокое изучение генетики дрожжей и замена нормальных генов модифицированными (разд. 5.6.В) увеличивают возможности обратной генетики. Широко представлены в данной главе и гены вирусов млекопитающих, поскольку по своим структурным и функциональным характеристикам они часто коррелируют с генами своих хозяев. Действительно, многие неизвестные ранее особенности строения и регуляции эукариотических генов были выявлены при изучении именно вирусных геномов. В данной главе рассмотрены также некоторые гены растений, беспозвоночных (морского ежа и Drosophila) и позвоночных (амфибий, птиц и млекопитающих, включая приматов), поскольку это помогает понять сложные процессы развития многоклеточных организмов. [c.21]


    Исследования умеренных фагов сальмонелл позволили понять некоторые особенности механизмов, с помощью которых эти бактериальные вирусы связываются со стенками клеток-хозяеш. Местом первичного присоединения являются, по-видимому, сами О-антигены. Тонкие нити, расположенные на отростке фага (дополнение 4-Д), действуя наподобие антител, связываются со специфическими группировками полисахарида. Однако в результате включения генома фага и изменения строения О-антигена последующее присоединение -вирусов блокируется. В то же время клетки бактерий становятся восприимчивыми к вирусам другого штамма [109]. [c.394]

    Нуклеопротеиды. Нуклеопротеиды занимают специальное, особенно важное место среди протеидов они находятся во всех живых клетках, включая бактерии, и в вирусах. Они являются существенными составными частями клеточных ядер, но находятся в небольших количествах и вне ядра в клеточной плазме, а также во многих слизях и секрециях животного организма молоке, желчи и т.д. Особенно богаты нуклеонротеидами органы, в строении которых ядра занимают основное место, а именно такие железы, как зобная, поджелудочная, селезенка, печень, а также лейкоциты и сперматозоиды (их сухое вещество содержит 50—80% нуклеопротеидов). В клеточных ядрах находятся определенные волоски, называемые хромосомами, особенно глубоко окрашивающиеся органическими красителями и состоящие почти исключительно из нуклеопротеидов, [c.455]

    Что мы можем ожидать от опытов, которые будут проведены в молекулярной биологии Что принесет нам эта новая, пограничная между биохимией и биологией область науки, которая экспериментирует на границе с жизнью, рассматривая биологические явления как бы через молекулярные очки А если однажды окажется возможным полностью, по определенному плану строения , синтезировать вещество наследственности — ДНК — и создать у потомства вполне определенные свойства Если можно будет даже синтезировать нечто вроде пресловутого гомункулуса в реторте , но в современной и гораздо более скромной форме — например, в виде некой простой бактерии И будет ли это простейшее искусственное живое существо, показывающее только важнейшие признаки жизни — обмен вещества и энергии, рост и размножение, —полезным или вредным для человека Что предпримет при этом общество Будет ли это живое существо особенно опасным возбудителем болезни или безвредной бактерией типа Es heri hia oli — кишечной палочки, этого домашнего животного молекулярной биологии, которое поставляет необходимые для экспериментов ферменты и служит пищей для бурно размножающихся вирусов и бактериофагов  [c.164]

    Исследование вирусов, особенно бактериальных, внесло огромный вклад в наше понимание генетических явлений. Быстрое размножение бактериофагов дает возможность за одни сутки производить скрещивания в потомстве двух последовательных поколений. Аналогичные скрещивания на дрозофиле требуют 3,5 недель, а на кукурузе-по меньшей мере года. Кроме того, огромная численность фаговых популяций, содержащихся в нескольких миллилитрах кyльtypaльнoй жидкости, дает возможность наблюдать очень редкие генетические события. Малый размер геномов многих фагов по сравнению с геномом бактерий, например Е. соН, позволяет идентифицировать все или по крайней мере большинство фаговых генов и весьма подробно представить себе генетическую организацию и регуляцию генома в целом. Геном фага фХ174 состоит всего из девяти генов, геном фага лямбда-менее чем из 60, тогда как геном Е. соН насчитывает, вероятно, несколько тысяч генов. Сочетание этих замечательных достоинств сделало вирусы незаменимыми генетическими объектами и привело к тому, что геномы некоторых бактериофагов изучены в настоящее время лучше, чем каких бы то ни было иных организмов. Они могут служить моделями при анализе строения и работы более сложных геномов. [c.190]


Смотреть страницы где упоминается термин Особенности строения бактерий и вирусов: [c.110]    [c.19]    [c.34]   
Смотреть главы в:

Практикум по цитологии растений Изд.4 -> Особенности строения бактерий и вирусов




ПОИСК







© 2025 chem21.info Реклама на сайте