Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сенсоры на основе полевых транзисторов

    Если холинэстераза иммобилизована с помощью ковалентного связывания, то срок службы биосенсора возрастает Так, датчик, состоящий из рН-электрода с иммобилизованной на поверхности ацетилхолинэсте-разой (путем сшивки глутаровым альдегидом с альбумином), функционирует без изменения характеристик достаточно длительное время. С его помощью определяли паратион и севин на уровне 10 - 10моль/л Продолжигельность анализа 30 мин. Содержание паратиона и севина контролировали по относительному снижению отклика сенсора после внесения в ячейку аликвоты пробы. Заметим, что величина измеиения pH зависит не только от активности фермента, но и от буферной емкости раствора. Поскольку увеличение кислотности происходит лишь на мембране, а в объеме раствора pH остается практически постоянным, обычно применяют высокие (до 0,1 моль/л) концентрации субстрата и ячейки большого (100 мл и выше) объема. Кроме глутарового альдегида для иммобилизации холинэстеразы используют сополимеры акрил- и метакриламида, желатин. В последнем случае стеклянный шарик рН-электрода погружают в 5-10%-й раствор желатина, содержащий фермент, затем высушивают и обрабатывают водным раствором глутарового альдегида. Аналогичные мембраны используют и в датчиках на основе рН-чув-ствительных полевых транзисторов (911. [c.294]


    Сенсоры на основе полевых транзисторов [c.375]

    Теория химических сенсоров на основе полевых транзисторов [c.384]

    Полевые транзисторы (как и биполярные) находят применение в различных аналоговых и цифровых схемах - как с дискретными элементами, так и в интегральных. В последних наиболее широко применяются МДП-транзисторы с индуцированным каналом. Высокое входное сопротивление таких транзисторов является ценным качеством при создании электронных средств для потенциометрических измерений. На основе МДП-транзисторов созданы рН-метрические, ионоселективные и биосенсоры, используемые в биологии и медицине, а также для контроля за содержанием загрязнителей в объектах окружающей среды. В таких сенсорах затвор транзистора выполняет роль индикаторного электрода. [c.34]

    Тип преобразователя определяется особенностью реакции, протекающей на электроде. Невозможно найти универсальный преобразователь на все возможные вещества. В технологии электрохимических сенсоров используются преобразователи различных типов потенциометрические, амперометрические, кулонометрические, кондуктометрические, полупроводниковые на основе оксидов металлов, ионоселективные полевые транзисторы и др. Для повышения избирательности на входном устройстве сенсора (перед чувствительным слоем) могут размещаться мембраны, селективно пропускающие частицы определенного заряда или размера. [c.552]

    Основные тенденции развития сенсоров состоят в дальнейшей миниатюризации и снижении стоимости этих устройств за счет применения современных эффективных технологий, в создании интегральных и интеллектуальных сенсоров, в разработке совместных с микроэлектроникой технологий, в выпуске сенсоров с са-мокалибровкой и в создании микромультисенсоров, в повышении чувствительности и селективности устройств. Недостатки сенсоров на основе полевых транзисторов, связанные с невысокой надежностью их в работе вследствие низкой защищенности затвора от воздействия окружающей среды и малой прочностью закрепления чувствительного слоя, стимулируют дальнейшие исследования в области химического модифицирования неорганических материалов. [c.474]

    Перечисленные проблемы можно успешно решить за счет преобразования высокоомного исходного сигнала ИСЭ в низкоомный входной сигнал с использованием электронной схемы, расположенной непосредственно в корпусе электрода [75]. С этой точки зрения преимущество имеют ионоселективные сенсоры на основе полевых транзисторов, так как сенсоры этого типа дают низкоомный сигнал и без помощи дополнительной схемы. Для передачи сигнала ИСЭ на большие расстояния, что становится необходимым при использовании автоматических промышленных ион-анализаторов в режиме on-line или анализаторов, предназначенных для контроля за загрязнениями объектов окружающей среды, полезно переводить сигнал в цифровую форму. Этот прием позволяет предотвратить потери сигнала из-за накопления шумов [75]. [c.119]


    Возможна микроэлектронная интеграция сенсора и обработки сигнала, если потенциометрический сенсор основан на полевом транзисторе (ПТ). Такая микросхема может быть химически чувствительной (ХимПТ) или специфично ион-селективной (ИСПТ). Бергвельд разработал сенсоры на основе металлок-сидных ПТ (МОПТ). [c.500]

    Ионоселективные полевые транзисторы (ИСПТ) впервые были описаны Бергвель-дом в 1970 г. [3]. Мацуо и Уайз предложили усовершенствованную конструкцию ИСПТ, в которой в качестве диэлектрического затвора используется нитрид кремния (SiзN4), и использовали ее как сенсор pH [4]. В 1980 г. было показано, что ИСПТ с нанесенным на диэлектрический затвор слоем иммобилизованной пенициллиназы можно использовать как сенсор пенициллина [5] (см. гл. 26). Ферментный сенсор на основе ПТ описан и нами [6]. [c.375]

    Рассмотренные в настояшей книге (гл. 1 гл. 9 и далее) и в недавно опубликованном обзоре [25] ферментные электроды привлекли большое внимание. Ферментные электроды представляют собой один из немногих инструментов, позволяюших в настоящее время определять биологические молекулы электрохимическими методами. Важнейшим элементом соответствующих сенсоров является тонкая проницаемая мембрана, в которую включен фермент и которая располагается на поверхности, например ИСЭ. В результате реакции фермента с субстратом образуются продукты или расходуется субстрат концентрации продуктов или субстрата можно контролировать с помощью этого ИСЭ. Применение для контроля концентраций ИСПТ вместо ИСЭ обеспечивает ряд определенных преимуществ. Во-первых, полевой транзистор на основе ферментов (ФПТ) выгодно отличается от ферментного ИСЭ тем же, чем любой ИСПТ от соответствующего ИСЭ. Во-вторых, миниатюрность и соответствующая геометрия ИСПТ способствуют сокращению необходимого количества фермента до минимума, что особенно важно в случае дорогостоящих ферментов. В-третьих, в описанной Карасом и другими [26] конструкции сенсора удачно решены задачи регулирования толщины мембраны и ее адгезии к поверхности ФПТ поэтому отпадает необходимость в каких бы то ни было способах крепления мембраны, как правило, обязательных в обычных ферментных электродах. В-четвертых, ФПТ обычно имеет несколько транзисторов на одном кристалле поэтому второй транзистор можно использовать в качестве стандарта, откликающегося на любые электрические, химические и физические стимулы, но не на ферментативную реакцию. Следовательно, математическая разность между сигналами двух ПТ содержит только необходимую информацию о концентрации определяемого вещества при существенно сниженном уровне фона. [c.408]

    Химически чувствительные полевые транзисторы чрезвычайно интересны и с той точки зрения, что с их помощью многие вещества можно определять на базе таких механизмов, которые ранее было трудно или даже невозможно реализовать. В частности, поляризованные ХЧПТ в принципе позволяют определять изменения поверхностного заряда, который может быть индуцирован специфическими взаимо-цействиями иммунореагентов на поверхностях. К сожалению, разработке сенсоров такого типа может препятствовать необходимость создания почти идеально поляри-юванной границы раздела. Другим важным направлением является разработка газовых сенсоров на основе ПТ, в которых используются такие механизмы чувствительности к газам, какие не удавалось реализовать ранее в других аналитических устройствах. [c.423]


Смотреть страницы где упоминается термин Сенсоры на основе полевых транзисторов: [c.318]    [c.555]    [c.467]   
Смотреть главы в:

Биосенсоры основы и приложения -> Сенсоры на основе полевых транзисторов




ПОИСК





Смотрите так же термины и статьи:

Полевые транзисторы

Сенсоры

Транзистор

Шпа г полевой



© 2024 chem21.info Реклама на сайте