Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионная область химической

    Вид общего кинетического уравнения зависит от области — кинетической, диффузионной или переходной, — в которой идет процесс, т. е. от соотношения констант скоростей его диффузионных и химических стадий. В общем виде скорость гетерогенного процесса при идеальном вытеснении и неполном перемешивании выражается уравнением  [c.157]


    Селективность при параллельных реакциях. Совсем иной характер носит влияние диффузионного торможения на процесс, включающий параллельные реакции. В этом случае и в диффузионных областях истинная химическая кинетика реакций на новерХ ности может остаться единственным фактором, определяющим селективность [c.144]

    В диффузионной области химическое взаимодействие газообразного реагента с углеродом топлива происходит на внешней (контурной) реакционной поверхности топлива. Практически протекание процесса в диффузионной области может быть достигнуто при высоких температурах и небольших скоростях дутья. [c.104]

    В диффузионной области химическое реагирование происходит на внешней реакционной поверхности кислорода. В этой области катализаторы не оказывают влияния на скорости хими ческого процесса. [c.65]

    Следует добавить, что в рассматриваемой диффузионной области (при постоянном давлении) устанавливается линейная зависимость скорости превращения от концентрации исходного вещества в реакционном пространстве, т. е. как для реакции первого порядка. Кажущийся порядок превращения не характеризует, конечно, химическую реакцию на поверхности контакта фаз. [c.250]

    Выше уже говорилось о так называемых кинетической и диффузионной областях протекания процесса. Когда-то использование кинетического приближения было обусловлено отсутствием других возможностей расчета слог-кных химических реакторов. И сегодня в тех случаях, когда мы не имеем возможности разобраться в сложных физических процессах, вполне закономерно в качестве нулевого приближения использовать представление о кинетической области протекания процесса. Однако широкое использование кинетического приближения в настоящее время уже ничем не оправдано. [c.21]

    Процессы массо- и теплообмена, сопровождаемые химической реакцией, могут протекать в диффузионной, кинетической или промежуточной областях. В диффузионной области процесс лимитируется скоростью транспорта теплоты и вещества в зоне реакции и реализуется при больших скоростях химической реакции. Наоборот, процесс, протекающий в кинетической области, лимитируется скоростью химической реакции и реализуется при больших скоростях транспорта теплоты и вещества к зоне реакции. [c.259]

    Трактовка Франк-Каменецкого еш,е довольно осторожна, особенно если сравнить ее с трактовками других авторов (см., например, работы [12] или [35]), определяюш их диффузионную область как область, в которой скорость массопередачи значительно ниже скорости химической реакции. [c.15]


    Еслп оперировать единственно общепринятыми в настоящее время терминами кинетическая и диффузионная области , то следует все физико-химические процессы разбить на две неравные группы. При этом термин кинетическая область обозначает, что скорость возникновения энтропии лимитируется скоростью химического взаимодействия. Термин же диффузионная область означает, что скорость возникновения энтропии лимитируется скоростью одного из физических процессов. Вопрос о том, какой именно из физических процессов является в этом случае лимитирующей стадией, представляет самостоятельную задачу. Практически кинетическая область имеет место, когда все физические процессы протекают вблизи от равновесия. Обычно при этом имеют в виду наличие теплового и фазового равновесия. Диффузионная же область имеет место вблизи от положения химического равновесия в реакционной фазе. [c.18]

    Кинетика цепной химической реакции, ее скорость и средняя длина цепи, естественно, находятся в прямой связи с условиями протекания реакции. Здесь мы ограничимся случаем, когда цепи зарождаются в объеме, но обрыв цепей происходит как в объеме, так и на поверхности. При этом будем считать, что объемный об]1ыв цепей следует линейному закону и что реакция протекает в диффузионной области. В этом случае для плоского реакционного сосуда (одномерная задача) при справедливом для диффузионной области равенстве нулю коицептрации активных центров у поверхности реакционного сосуда средняя длина цепи [c.209]

    Выражение (1.33) представляет собой формулу аддитивности диффузионных и химических торможений процесса. Очевидно, что она корректна при условии квазистационарности процесса и при выполнении условий (1.27), т. е. прп наличии равновесия на границах раздела фаз. К сожалению, возмон ность использования формулы (1.33) ограничивается лишь тем простейшим частным случаем, для которого эта формула была получена, так как если порядок реакции по переходящему компоненту отличается от 1 или если процесс существенно нестационарен, уже не удается провести разделение переменных величин и выразить общее сопротивление процессу в виде суммы отдельных сопротивлений. Поэтому, сравнивая константы скоростей отдельных стадий процесса, можно выделить из них лимитирующую и дать четкое определение области протекания только при указанных ограничениях. [c.20]

    Как мы уже знаем, гомогенные процессы характеризуются взаимодействием веществ в одной фазе. В гетерогенных реакциях, наряду с химическими превращениями, имеются стадии переноса веществ. Их влияние на процесс в целом зависит от условий его протекания. Если наиболее медленной стадией является химическая реакция, то говорят, что процесс протекает в кинетической области, если же, наоборот, звеном, тормозящим процесс в целом, служит перенос веществ, то говорят о диффузионной области. Что является лимитирующей стадией — взаимодействие или транспорт вещества,— можно установить по температурной зависимости скорости реакции в первом случае она гораздо чувствительнее к температуре, чем во втором. [c.103]

    Быстрое сгорание кокса на образце, содержащем железо, обусловлено характером распределения кокса по сечению частицы катализатора. На этом катализаторе кокс в основном откладывается в периферийных солях частицы, в связи с чем средняя необходимая глубина проникновения кислорода в зону горения уменьшается. Это способствует улучшению регенерации катализатора в диффузионном режиме горения. Таким образом, в диффузионной области горения металлы, за исключением железа, почти не влияют на скорость выжига коксовых отложений. Полученные данные являются закономерными, так как в этой области скорость регенерации определяется скоростью подвода кислорода к зоне горения и отвода продуктов реакции из этой зоны, а не скоростью протекания химической реакции. [c.167]

    В реальных условиях работы газогенераторов (900—1000°С, 0,1 МПа) равновесие основных реакций полностью смещено в сторону конечных продуктов (синтез-газа). Режим газификации определяется, таким образом, кинетикой диффузионных и химических стадий. Скорость основных реакций газификации при температуре выше 1000°С достаточно велика, и поэтому при газификации в шахтных газогенераторах крупнокускового топлива (более 15 мм) можно принять, что процесс происходит в диффузионной области. В действительности же даже в шахтных газогенераторах и тем более в генераторах кипящего слоя процесс газификации протекает в переходной области. [c.52]

    Зависимость gk от 1/7, где й — константа скорости гетерогеннокаталитического процесса, при переходе из одной кинетической области в другую характеризуется на графике изломами на прямых. При низких температурах процесс протекает в кинетической области и угловой коэффициент прямой наибольший, так как у химической реакции сравнительно с другими стадиями самая большая энергия активации. При повышении температуры получается излом при переходе во внутренне-диффузионную область и следующий излом — при переходе во внешне-диффузионную область. [c.436]


    В последнем случае скорости диффузии и химического превращения соизмеримы. Для процессов абсорбции, протекающих в диффузионной области, общая функциональная зависимость критерия равновесности представляется в виде  [c.147]

    Сложнее зависимость изотермической перегонки от температуры, которая влияет и на растворимость, и на скорость процессов первой и третьей стадии. Чем меньше растворимость, тем больше роль этих стадий в кинетике всего процесса. Растворимость может увеличиваться, а может и уменьшаться с повышением температуры. В то же время повышение температуры всегда приводит к ускорению стадий растворения и роста частиц. Может случиться так, что при одной температуре лимитирующей является первая стадия, а при другой — вторая стадия. Обычно константы скорости химических реакций, к которым можно отнести стадии растворения и роста частиц, увеличиваются с повышением температуры быстрее, чем константа скорости диффузии. Например, при повышении температуры на 10°С коэффициент диффузии в растворах увеличивается на 30—40%, а константа химической реакции возрастает в 2—4 раза. Это обусловлено тем, что энергии активации процесса в диффузионной области находятся в пределах 5— 20 кДж/моль, а в кинетической области 50—200 кДж/моль. Таким образом, с понижением температуры скорости первой и третьей стадии изотермической перегонки резко уменьшаются по сравнению со скоростью диффузионной стадии и могут стать лимитирующими скорость протекания всего процесса перегонки. [c.278]

    Общая скорость процесса зависит от скоростей его отдельных стадий и определяется наиболее медленной (лимитирующей) стадией. Если наиболее медленной является стадия подвода исходных веществ в зону реакции или отвода продуктов, и она лимитирует общую скорость процесса, считается, что процесс протекает в диффузионной области. Если общую скорость процесса лимитируют скорости химических реакций или одной из них, считают, что процесс протекает в кинетической области. Если скорости всех стадий соизмеримы, то процесс протекает в переходной области. [c.73]

    МНд н- НЫОз = NH4NOя -f 148,6 кДж Этот хемосорбционный процесс, при котором поглощение газа жидкостью сопровождается быстрой химической реакцией, идет в диффузионной области и сильно экзотермичен. Теплота нейтрализации рационально используется для испарения воды из растворов нитрата аммония. Из рис. 57 видно, что, применяя азотную кислоту высокой концентрации и подогревая исходные реагенты, можно непосредственно получить плав аммиачной селитры (концентрацией выше 95—96% ЫН4 Оз) без применения выпаривания. [c.154]

    Протекание той или иной реакции на поверхности катализатора всегда связано с транспортировкой реагирующих веществ и продуктов реакции к участкам внутренней поверхности и от них. Как было указано (см. гл. II), в зависимости от условий процесса, активности, пористой структуры и размеров зерен катализатора процесс могут лимитировать собственно химические превращения (кинетическая область) либо диффузионные торможения (диффузионная область) [1, 2, 99—108]. [c.71]

    Скорость всего процесса в целом зависит от наиболее медленной стадии реакции, которая и является определяющей. Если определяющей стадией является сам акт химического взаимодействия между реагирующими молекулами, а процесс отвода и подвода компонентов практически не влияет на ее скорость, то такую реакцию называют протекающей в кинетической области. Если определяющей стадией является скорость подвода реагирующих веществ, то реакцию называют протекающей в диффузионной области. Если же скорости как самой реакции, так и процессов диффузии соизмеримы, то скорость всего процесса является функцией кинетических и диффузионных явлений и процесс протекает в переходной области. [c.628]

    В зависимости от режима процесса, качества сырья и степени дисперсности катализатора роль диффузионных и адсорбционных процессов может быть больше или меньше. Так, установлено, что при нормальном режиме реактора каталитического крекипга с кипящим слоем порошкообразного катализатора при температурах от 480 до 535° С решающее значение имеют адсорбция и химические реакции на поверхности катализатора . При крекинге на крупно-гранулированном катализаторе скорость реакции тормозится диффузией молекул сырья к внутренней поверхности катализатора. Г. М. Панченковым и Ю. М. Жоровым было показано, что каталитический крекинг легких газойлей при размере зерен катализатора 3—Ъ мм и температурном интервале 450—500° С протекает в области переходной между внутренней кинетической и внутренней диффузионной . Крекинг тяжелых газойлей при температурах выше 460° С происходит вблизи внешней диффузионной области, т. е. скорость распада здесь мало зависит от активности и величины внутренней поверхности катализатора и определяется скоростью подвода молекул сырья к внешней его поверхности. [c.153]

    Расчет величины Q по уравнению (П.28) упрощается стационарностью энергетического баланса в реакторах непрерывного действия. Для аппаратов группы РБ и РМ скорость реакции неизменна и определяется конечной концентрацией реагирующих веществ. Это положение допустимо также и при тепловом расчете реакторов группы РП. Хотя по жидкой фазе они близки к аппаратам идеального вытеснения, но в силу малого времени пребывания в них жидкости и протекания реакции преимущественно в диффузионной области скорость химического превращения в этих аппаратах можно считать неизменной во времени. [c.26]

    При температуре 235° С реакция переходит в кинетическую область при Шр <= 0,1 м/с и дальнейшее увеличение расхода водорода слабо отражается на выходе метана. При температуре 261° С константа скорости химической реакции достигает такой величины, при которой в исследованном диапазоне скоростей газа соблюдается условие (II.58), т. е. реакция протекает в диффузионной области. Снижение выхода метана при [c.37]

    Очевидно, что зависимость скорости процесса от важнейшего фактора — температуры в этих областях различна. В кинетической области скорость химического процесса является сильной функцией температуры, в диффузионной области скорость практически не зависит от температуры (рис. [c.99]

    Т. е. не зависит от эффективности захвата свободных радикалов стенкой сосуда. Область значений О, удовлетворяющих этому неравенству, есть диффузионная область протекания химической реакции. [c.295]

    Наиболее важными для жидкофазного катализа показателями кислот являются растворимости в них изобутана и олефинов. Рс створимость изобутана в Н ЗО невелика и приблизительно в 30 рс 3 ниже, чем в НР. Олефины в этих кислотах расворяются достаточно хорошо и быстро. В этой связи концентрация изобутана на поверхности раздела фаз (эмульсии типа углеводород в кислоте) Нс1 много меньше концентрации олефинов, что обусловливает боль — ш/ю вероятность протекания реакций полимеризации олефинов. Э о обстоятельство, а также высокие значения плотности, вязкости и поверхностного натяжения кислот, особенно Н ЗО , обусловливает протекание реакций С —алкилирования в диффузионной области с лимитирующей стадией массопереноса реактантов к повер — хиости раздела фаз. Для ускорения химических реакций С —алки — ЛР- рования в среде Н 50 и НР необходимо интенсифицировать п юцессы перемешивания и диспергирования реакционной массы с целью увеличения поверхности раздела кислотной и углеводородной фаз. [c.140]

    Таким образом, в этом случае сопротивление диффузии определяет скорость превращения, и процесс проходит в диффузионной области. Когда же коэффициент массоотдачи О/г велик по сравнению с константой скорости химической реакции к D z к), уравнение (VIII-172) приобретает вид  [c.248]

    Наибольшее применение пленочная теория нашла в случае, когда химическая реакция протекает в диффузионной области, т. е. для процессов с быстропротекаюшими реакциями. В этом случае зона реакции мала и приближенно может бьггь заменена фронтом. Фронт разделяет поток на две области. В одной иэ них находится экстрагент, а в другой -хемосорбент. Поскольку реакция протекает мгновенно, то на фронте реакции концентрации реагирующих веществ равны нулю. Скорость процесса переноса в данном случае лимитируется скоростью подвода вещества за счет диффузии. [c.265]

    Таким образом, с помощью формулы (6.51) и значений Ф , определяемых зависимостью (6.60), процесс хемосорбщ1и может бьггь рассчитан как в смешанной, так и в диффузионной областях протекания химической реакции. [c.271]

    Кинетическая м диффузионная область. Очень важно правильно определить, протекает процесс в диффузионной области или кинетической, т. е. что является определяющей—скорость массопередачи или скорость химической реакции. Основными переменными, позволяющими это oбнapyжиtь, служат скорость потока и температура. Уравнение (VI, 2) показывает, что скорость массопередачи почти прямо пропорциональна скорости потока. С другой стороны, такое изменение рабочих условий совершенно не сказывается на скорости химической реакции. Влияние температуры на массопередачу выражено только в изменении физических свойств веществ в критериях подобия. Однако суммарное влияние температуры на скорость массопередачи весьма незначитель- [c.181]

    Для теоретического определения области протекания процесса необхо-димс оценивать скорости диффузии и химической реакции отдельно, как скорость независимых процессов. Отношение определенных таким образом скоростей указывают область протекания процесса в целом. Так следует поступать потому, что при установившемся течении реакции скорость диффузии становится равной скорости реакции, независимо от режима процесса, т. е. это равенство наблюдается в кинетической, диффузионной и переходной Областях. При стационарном протекании реакции термин диффузионная область вовсе не означает, следовательно, что действительная скорость реакции на реакционной поверхности больше скорости диффузии к этой поверхности. Обе эти скорости равны, но благодаря медленному притоку веществ к поверх 10сти скорость химической реакции на поверхности принудительно становится равной скорости диффузии. Концентрация вещества на поверхности прн этом мала, а градиент концентрации вблизи поверхности оказывается большим. И, наоборот, в кинетической области, где независимо определенная скорость диффузии значительно превышает скорости реакции, равенство скоростей диффузии и реакции наблюдается при мало отличающихся значениях концентраций реагирующих веществ в объеме и на поверхности. [c.313]

    При достаточно низкой температуре наиболее медленной стадией всех подобных процессов, по-видимому, является химическая реакция на поверхности. Однако, прежде чем эта реакция окажется возможной, газ должен продиффундировать к поверхности он должен продиффундировать через твердый продукт реакции (окись цинка в последнем примере) или через другие газы, присутствующие в системе (как в случае каталитической реакции или твердофазной реакции с выделением газообразных продуктов). Следовательно, во всех случаях диффузионный процесс должен предшествовать химической реакции. При этом должен происходить также и процесс обратной диффузии, следующий за химической реакцией, в тех случаях, когда образуются газообразные продукты. Так как температурный коэффициент для диффузии обычно значительно меньше, чем для химической реакции, диффузионные процессы при достаточно высоких температурах протекают существенно медленнее, чем поверхностные реакции, что и приводит к переходу в диффузионную область. В результате кривая выделения тепла приобре- [c.169]

    Изложенные простейшие представления приводят к весьма существенным выводам в отношении закономерностей феноменологической химической кинетики, которая, как указывалось выше, лежит в основе расчета жидкостных реакторов.. Так, если времена взаимодействия молекул реагентов существенно меньше, чем время пребывания их в клетке, то скорость реакции оиределяется либо частотой столкновения, либо временем выхода из клетки. Поскольку оба эти процесса обусловлены диффузией реагентов в растворе, то в таких случаях реакции протекают по диффузиоппо-контролируе-мому механизму. Этот механизм не следует смешивать с протеканием реакций в диффузионных областях, когда скорость химического процесса определяется диффузией реагентов из одной фазы в другую пли к твердой поверхности. [c.33]

    С повышением скорости газа в слое наиболее резко увеличивается коэффициент массообмена, так как величина скорости входит в формулу (12) в степени, близкой к единице. В процессе горения наряду с реакцией (1) протекает реакция (2) и другие сложные физико-химические процессы. В связи с более высокой энергией активации реакции (2), по сравнению с энергией активации реакции (1) при одной и той же температуре (1000—1100°С), процесс взаимодействия углерода с кислородом протекает в диффузионной области, а при тех же условиях реакция восстаповлеиия двуокиси углерола находится в области реагирования, близкой к кинетической. Переход восстановительной реакции нз кинетической области в диффузионную возможен при высокой температуре и небольших скоростях потока. [c.168]

    При экстраполировании результатов за пределы экспериментально найденных значений необходимо четко представлять себе, что при других значениях переменных соотношение влияния различных тормозящих факторов на протекание процесса может измениться. Например, для частиц, образующих твердую необлетающую корку золы , повышение температуры и в меньшей степени увеличение их размеров приводит к тому, что диффузионное сопротивление становится фактором, лимитирующим скорость процесса, поскольку критическая температура перехода в диффузионную область является функцией размеров частиц, пористости материала и кинетики химической реакции. Для процессов, при которых на поверхности частицы не образуется слой золы , повышение температуры также сопровождается возрастанием относительного влияния сопротивления газовой пленки. [c.346]

    Гетерогенная каталитическая реакция, осуществляемая в присутствии твердых пористых катализаторов, состоит из следующих стадий внешней диффузии реагирующих молекул из объема к частице катализатора, внутренней диффузии через норы к новерхности катализатора, адсорбции молекул поверхностью, химической реакции между адсорбированными молекулами, десорбции образующихся продуктов реакции и их диффузии в обратном направлении. Скорость всего ироцесса в целом зависит от наиболее медленной стадии, которая и является определяющей. Если определяющей стадией является сам акт химического взаимодействия между реагирующими молекулами, а процесс отвода и подвода компонентов практически ие влияет на ее скорость, то такая реакция протекает в кинетической области. Если определяющей стадией яиляется скорость подвода реагирующих веществ, то в этом случае реакция протекает в диффузионной области. Если скорости как самой реакции, так и процессов диффузии соизмеримы, то и этом случае скорость всего ироцесса является функцией кинетических и диффузионных явлений Рис. 22. 1. Занисимость коп- ц процесс протекает в переходной об-стапты скорости реакции от ттяр-гг, тсмператури. [c.596]

    С повышением скорости газа в слое наиболее резко увеличивается коэффициент массообмена, так как величина скорости входит в формулу (11) в степени, близкой к единице. В процессе горения наряду с реакцией (7) протекает реакция (8) и другие сло кные физико-химические процессы. В связи с более высокой энергией активации реакции (8) по сравненшо с энергией активации реакции (7) при одной н той же температуре (1000—1100 °С), взаимодействие углерода с кислородом протекает в диффузионной области реакция восстановления двуокиси углерода ири тех же условиях находится в области реагирования, близкой к кииетическ(л"1. Восстановительная реакция может перейти из ки-нетичсско11 области в диффузионную при высокой температуре и небол1>ших скоростях потока (в соответствии с (5). [c.127]

    Большинство технологических процессов, совершающихся в печах, происходит при таких температурах, которые позволяют пренебрегать длительностью самого акта химического взаимодействия, т. е. позволяют считать, что процессы идут в диффузионной области, и поэтому темп процесса зависит от темпа смесеобразования, от быстроты контактиромния реагента с сырьевым материалом или топливом. В рамках общей теории печей технологический процесс рассматривается только с позиции его энергетической сущности. С этой точки зрения является безразличным, как в зону технологического процесса введена необходимая энергия — с сырьевыми материалами или с топливом, ибо если в зоне возникло одно и то же удельное количество тепла, [c.48]


Смотреть страницы где упоминается термин Диффузионная область химической: [c.171]    [c.139]    [c.60]    [c.208]    [c.174]    [c.376]    [c.146]    [c.128]    [c.99]    [c.94]    [c.375]   
Теория химических процессов основного органического и нефтехимического синтеза Издание 2 (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузионная область гетерофазного процесса при мгновенной химической реакции

Диффузионная область протекания химического процесса

Диффузионная область химической реакции

Кинетическая п диффузионная области гетерогенной химической реакции

Массообмен с химической реакцией в дисперсной фазе (диффузионная область)

Область диффузионная

Примеры протекания химических реакций в диффузионной области

Реакции химические, диффузионная област

Стадии гетерогенной химической реакции. Диффузионная и кинетическая области процесса

Химические реакции бимолекулярные диффузионная область



© 2025 chem21.info Реклама на сайте