Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хеликаза

    Расплетание двойной спирали ДНК в ходе репликации Нативные ДНК двуспиральны следовательно, перед репликацией цепи родительской молекулы, матричные цепи ДНК, должны быть разделены. Эту реакцию осуществляют два типа белков хеликазы и [c.52]

    Теперь. можно нарисовать репликативную вилку со всеми дей-ствующи.ми та.м белками (рис. 33). Дуплекс родительской молекулы расплетают две хеликазы — Rep и DnaB — в составе праймосомы. Образующиеся одноцепочечные участки кооперативно покрывает 58В-белок. Холофермент ДНК-полимеразы III едет по одной из матричных цепей в направлении раскрывания вилки и синтезирует ведущую цепь ДНК. По другой матричной цепи в том же направлении едет праймосома. Время от времени входящая в состав праймо- [c.56]


    Транскрипционная активация (см. с. 265). Вначале репликация идет по схеме Кэрнса обнаруживаются 0-молекулы, в которых две репликационные вилки движутся в противоположных направле-инях. Как всегда, движение репликационной вилки, имеющей лидирующую и отстающую цепи, требует сложного ферментативного аппарата. Большинство компонентов этого аппарата (ДНК-полимераза, праймаза, лигаза, хеликазы и др.) при репликации генома фага Я поставляется клеткой, хотя определенную роль, невидимому, играют и фагоспецифические белки О и Р. [c.275]

    III удлиняет эти затравки до тех пор, пока не упрется в предыдущую затравку, т. е. синтезирует фрагменты Оказаки. Затем действует ДНК-полимераза I, которая продолжает удлинять фрагменты Оказаки, одновременно гидролизуя РНК-затравку предыдущего Фрагмента, используя свою 5 -экзонуклеазную активность. После действия ДНК-полимеразы I между двумя соседними фрагментами остается только одноцепочечный разрыв, который зашивает ДНК-лигаза. Таким образом, в репликативной вилке одновременно работают около 20 разных полипептидов, осуществляя сложный, высо-Коупорядоченный и энергоемкий процесс. Не говоря уже о том, что Каждый нуклеотид переходит в ДНК из богатого энергией предшественника, множество. молекул АТР тратится на действие хеликаз, на синтез РНК-затравок, которые затем удаляются, на активацию ДНК-полимеразы III при переходе на каждый новый фрагмент Оказаки запаздывающей цепи и на работу топоизомераз по Раскручиванию взаимозакрученных цепей ДНК (см. ниже). Такова цена высокой точности и скорости репликации. [c.57]

    Холофермент ДНК-полимеразы 111 может димеризоваться. На этом основании выдвинуто предположение, что две молекулы холофермента, праймосома, и, возможно, дополнительная хеликаза образуют в клетке единый комплекс — реплисоиу, которая движется по ДНК, одновременно синтезируя обе новые цепи (рис. 34). Не исключено, что в состав гипотетической реплисомы входят и некоторые ферменты биосинтеза нуклеотидов — предшественников ДНК-Это было бы разумна, учитывая, что дезоксирибонуклеотиды нужны в клетке только для синтеза ДНК. [c.58]

    Несколько отличный путь используется для репарации повреждений ДНК, заметно нарушающих структуру молекулы, например пиримидиновых димеров, образующихся под действием ультрафиолета. Такие повреждения удаляет специальный фермент — эндонуклеаза иугАВС (в темноте, когда не работает фотолиаза или когда повреждений в ДНК очень много), а нуклеаза разрывает фосфо-днэфирные связи с 5 - и с З -конца от поврежденного участка, а затем с помощью белка иугО, хеликазы И, поврежденный участок удаляется сопряженно с гидролизом АТР. Образующуюся брешь застраивает ДНК-полимераза I (рис. 46). [c.78]

    Вспомогательной хеликазой при синтезе ДНК Е. oli служит белок — продукт гена гер. Кер-хеликаза едет по матрице для синтеза ведущей цепи в направлении от 3 - к 5 -концу. Таким образом, Хеликазы DnaB и Rep едут по разным цепям ДНК, но в силу ан- [c.55]


    Схема Кэрнса, однако, не является основным способом репликации ДНК фага Я. Очень быстро (может быть уже после первого раунда) 0-молекулы превращаются в а-молекулы, т. е. приобретают форму, характерную для участников репликации по схеме разматывающегося рулона. Тем не менее между а-молекулами репликационных систем, использующих классический механизм разматывающегося рулона (например, у фага фХ174), и а-молекулами, образующимися на поздней стадии репликации ДНК фага Я, есть существенные различия. В первом случае 5 -конец хвостовой части молекулы имеет совершенно определенную структуру, так как он возникает в результате внесения разрыва в уникальное место кольцевого дуплекса. В случае же ДНК фага Я а-молекулы могут иметь самые разнообразные концы. При классическом разматывающемся рулоне из дуплекса вытесняется всегда определенная цепь 1(-Ь)цепь у фХ1741, что опять-таки связано с уникальностью разрыва, вносимого в дуплекс. В случае а-молекул ДНК фага Я из дуплекса может вытесняться любая из двух комплементарных цепей. Наконец, ферментативное обеспечение репликации по схеме разматывающегося рулона имеет свои особенности (например, в случае фага фХ174 — потребность в хеликазе Rep), которые не обнаруживаются при поздней репликации генома фага Я (где используется тот же набор ферментов, >гго и на ранней стадии). [c.275]

    Нативные ДНК двуспиральны следовательно, перед репликацией цепи родительской молекулы, матричные цепи ДНК, должны быть разделены. Эту реакцию осуществляют два типа белков хеликазы и [c.52]

    Механизм передачи ДНК из клетки в клетку состоит в том, что специальный белок узнает определенную последовательность, имеющуюся у трансмиссивных и мобилизуемых плазмид и называемую ориджином переноса, вносит в эту последовательность одноцепочечный разрыв и ковалентно связывается с его 5 -концом. Затем цепь ДНК, с которой связан белок, переносится в клетку-реципиент, а неразорванная комплементарная цепь остается в клетке-доноре. Весь этот процесс осуществляют белки, кодируемые га-генами трансмиссивной плазмиды, в частности один из этих генов кодирует специальную хеликазу, которая в АТР-зависимой реакции разделяет переносимую в реципиент и остающуюся в доноре цепи ДНК. Клеточный аппарат синтеза ДНК достраивает одиночные цепи и в доноре и в реципиенте до дуплексов. Белок, сидящий на 5 -конце перенесенной цепи, видимо, способствует замыканию плазмиды в реципиентной клетке в кольцо (таким образо.м, этот белок напоминает по свойствам топоизомеразы 1-го типа и родственные ферменты, например А-белок фага ФХ174 см. гл. ХП1/. [c.111]

    Что касается инициации на внутренних участках двухнитевой матрицы, то здесь также нужно различать два основных способа. Во-первых, первичная РНК-затравка может быть образована праймазой (или — реже — ДНК-зависимой РНК-полимеразой). Однако синтез затравки возможен только в том случае, если матрица соответствующим образом подготовлена. Подготовка включает взан.модействие. между вирус-специфическими белками, регулирую-щи.ми инициацию раунда репликации, и специфическими участками инициации репликации ori (от англ. origin — начало) в молекуле ДНК, Напри.адр, с участком оп в ДНК фага >. первично взаимодействует фагоспецифический белок — О, с белко.м О взаи.модей- твует другой фагоспецифический полипептид — белок Р, который свою очередь образует ко.мплекс с одной из клеточных хеликаз — 1родукто.м гена dna В. [c.265]

    Для образования первой затравки на молекуле ДНК SV40 необходимо присоединение к ori вирус-специфического белка — так называемого большого Т-антигена, который выполняет функции хеликазы, Взаи.модействие между ori и специфическими белками создает необходимые условия для синтеза затравки ферментами, которые умеют это делать, обычно праймазой. Однако в некоторых системах (в частности, у того же фага л) требуется дополнительное активирование оп. Эта цель может достигаться, например, тогда, когда в участке ori происходит транскрипция. Для такой транскрипционной активации важен именно сам акт транскрипции, а не ее продукты — РНК или белки. Считается, Что в процессе транскрипции ослабляется связь между комплементарными цепями когда такое ослабление захватывает участок ori. Он становится более доступным для праймазы. [c.265]

    Еще разнообразнее наборы белков, участвующие в синтезе ДНК на двухнитевых матрицах. В этом случае поми.мо уже перечисленных, требуются, в частности, хеликазы, способствующие расплетанию родительского дуплекса в области репликационной вилки (см. гл. И), набор с рментов, необходимых для синтеза отстающей цепи (праймазы ферменты, удаляющие РНК-затравку ДНК-лигазы, сшивающие фрагменты Окадзаки), а также — часто — топоизомеразы, снимающие избыточное внутримолекулярное напряжение, возникающее в результате расплетания матричного дуплекса. В обще.м, процесс элонгации при репликации вирусных ДНК-геномов не отличается принципиально от этого процесса при синтезе клеточных ДНК- Единственно, что следует отметить,— это использование (в некоторых системах) вирус-специфических репликационных белков, которые по своей функции аналогичны белка.м, и.меющимся в незараженной клетке. [c.266]

    Удлинение З -конца (+)цепи, сопровождающееся вытеснением ее 5 -конца, приводит к образованию промежуточных реплицирующихся молекул, напоминающих по форме греческую букву о,— ммекул с-типа, или просто а-молекул, Соответствующий способ синтеза ДНК на кольцевой матрице называют способом разматывающегося рулона. Следует заметить, что в реплицирующихся молекулах ДНК фага (fX174 белок А, находящийся на 5 -конце вытесняемой (—)цепи, по-видимому, удерживается в области реплика-ционной вилки, возможно, за счет взаимодействия с хеликазой Rep. Поэтому форма реплицирующейся молекулы в этом случае скорее напоминает цифру 8. [c.273]


    В процессе сайт-специфической рекомбинации в обмен вступают короткие специфические нуклеотидные последовательности одной и той же или обеих спиралей ДНК, распознаваемые особым сайт-специфическим ферментом, что приводит к трансформации распределения нуклеотидных последовательностей в геноме. Любые комплементарные взаимодействия между двумя гомологичными спиралями ДНК возможны лишь тогда, когда в одной из двух цепей происходит разрьш. К числу факторов, вызывающих такие одноцепочечные разрывы, относят химические агенты, некоторые виды излучения, специфические белки. Например, у Е. соИ обнаружен белок гес B D, который вызывает в молекулах ДНК одноцепочечные разрьшы. Белок гес B D представляет собой ДНК-зависимую АТРазу, которая действует как ДНК-хеликаза, перемещающаяся по спирали ДНК и вызывающая ее расплетение. Под влиянием этого белка, обладающего нуклеазной и хеликазной активностью, на двойной спирали ДНК возникает разрыв с образованием одноцепочечного участка ус (whisker) (рис. 5.5). [c.112]

    С комплексом DnaA-бел ка с расплетенным оПС связывается-С паС-белок, после чего с образовавшимся комплексом может связаться хеликаза DnaB, которая обеспечивает дальнейшее расплетание ориджина, необходимое для сборки реплисомы (рис. 36). [c.61]

    ТР-зависнмая эндонуклеаза и т. ВС вносит разрывы по обе стороны от пов-реждеиня. Хеликаза 1] гО способствует освобождению вырезанного олигонуклеотида одновременно ДНК-полимераза I застраивает образовавшуюся брешь) [c.77]


Смотреть страницы где упоминается термин Хеликаза: [c.52]    [c.52]    [c.54]    [c.56]    [c.60]    [c.61]    [c.62]    [c.82]    [c.91]    [c.271]    [c.273]    [c.282]    [c.283]    [c.52]    [c.52]    [c.52]    [c.54]    [c.56]    [c.57]    [c.57]    [c.60]    [c.62]    [c.82]    [c.91]    [c.265]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.52 , c.54 , c.61 , c.77 , c.78 , c.82 , c.91 ]

Молекулярная биология (1990) -- [ c.52 , c.54 , c.61 , c.77 , c.78 , c.82 , c.91 , c.111 , c.265 , c.266 , c.275 , c.282 ]

Биологическая химия Изд.3 (1998) -- [ c.480 ]

Биохимия (2004) -- [ c.450 ]

Современная генетика Т.3 (1988) -- [ c.108 , c.117 ]

Основы биохимии (1999) -- [ c.254 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте