Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДНК расплетание

    Расплетание двойной спирали ДНК в ходе репликации Нативные ДНК двуспиральны следовательно, перед репликацией цепи родительской молекулы, матричные цепи ДНК, должны быть разделены. Эту реакцию осуществляют два типа белков хеликазы и [c.52]

Рис. 3.5. Кривая плавления ДНК. оперативным расплетанием (разрывом водородных связей), которое происходит при нагревании двухцепочечных полинуклеотидов, при помощи кривых плавления (экспериментально наблюдают зависимость поглощения от температуры рис. 3.5). Середина интервала, в котором происходит переход к одноцепочечиым полинуклеотидам, называется температурой плавления (Т л). Т л зависит от соотношения содержания пар гуанин — цитозин к содержанию пар аденин — тимин, поскольку первая пара более устойчива. Рис. 3.5. <a href="/info/6102">Кривая плавления</a> ДНК. оперативным расплетанием (разрывом <a href="/info/917">водородных связей</a>), <a href="/info/1481749">которое происходит</a> при нагревании <a href="/info/1893076">двухцепочечных полинуклеотидов</a>, при <a href="/info/826654">помощи кривых</a> плавления (<a href="/info/1892626">экспериментально наблюдают</a> <a href="/info/169589">зависимость поглощения</a> от температуры рис. 3.5). Середина интервала, в <a href="/info/1481749">котором происходит</a> переход к одноцепочечиым полинуклеотидам, называется <a href="/info/6380">температурой плавления</a> (Т л). Т л зависит от соотношения содержания пар гуанин — цитозин к содержанию пар аденин — тимин, поскольку <a href="/info/1312671">первая пара</a> более устойчива.

    С функциональной точки зрения важно, что сверхспирализован-ная ДНК обладает значительным запасом энергии по сравнению с ее релаксированной формой. Спедовательно, локальное расплетание двойной спирали ДНК с отрицательными сверхвитками будет приводить к сбросу напряжения сверхспирализации, и потому лно энергет. чески выгодно. Это отчетливо проявляется в том, что отрицательная сверхспирализация заметно стимулирует переход ДНК нз правой В-формы в левую Z-форму. Действительно, уже при обычных физиологических условиях участки с последовательностями d( G) -d ( G)n и d(A ) -d(GT) , встроенными в ДНК с 0,06, переходят в левоспиральную Z-фор.му. Есть веские свидетельства [c.32]

    Расплетание (верхний рисунок) дает две новые цепи. Внизу конфигурация молекулы ДНК — двойная спираль [c.352]

    Так как цепи ДНК в дуплексе антипараллельны, то очевидно, что направление расплетания двойной спирали при репликации совпадает с направлением синтеза ДНК лишь для одной матричной цепи, но противоположно направлению синтеза ДНК на комплементарной матрице (рис. 31). Эго значит, что лишь на одной из матричных цепей синтез ДНК может происходить непрерывно. Как синтезируется ДНК на второй матрице Показано, что ДНК синтезируется сравнительно короткими фрагментами, называемыми фрагментами [c.53]

    Расплетание двойной спирали и синтез РНК-затравок на запаздывающей цепи [c.56]

    Расплетание двойной спирали Снятие топологических затруднений при репликации кольцевых ДНК, инициация раунда репликации [c.56]

    Считают, что в процессе элонгации примерно 13 нуклеотидов РНК образуют гибридную спираль с матричной нитью расплетенной ДНК (всего на этой стадии в ДНК расплетено примерно 18 нуклеотидов). По мере движения РНК-полимеразы по матрице впереди нее происходит расплетание, а позади восстановление двойной спирали ДИК. Одновременно происходит вытеснение очередного звена растущей цепи РНК из комплекса с матрицей. [c.619]

    Инициация синтеза ДНК - возникновение нескольких участков репликации (репликонов), где двухцепочечная молекула ДНК расплетается и возникает репликативная вилка. После расплетания цепи стабилизируются специальными белками. Здесь, в месте образования репликативной вилки, и происходит синтез новой ДНК в виде первой стадии - репликации. Родительская ДНК расплетена и находится в одноцепочечной форме. Каждая из цепей служит матрицей для синтеза новой ДНК. В ходе синтеза репликативная вилка перемещается вдоль молекулы, при этом расплетаются все новые участки, что происходит до тех пор, пока вилка не дойдет до точки окончания синтеза (точка терминации). [c.55]

    Расплетание двойной спирали ДНК в ходе репликации [c.52]

    В 1953 г. Дж, Уотсон и Ф. Крик сумели правильно интерпретировать данные рентгеноструктурного анализа ДНК, накопленные в лабораториях Р. Франклин и 14. Уилкинса, и на их основе построить модель пространственной структуры ДНК- Они показали, что макромолекула ДНК — это регулярная двойная спираль, в которой две полинуклеотидные цепи строго комплементарны друг другу. Из анализа модели следовало, что после расплетания двойной спирали на каждой из полинуклеотидных цепей может быть построена комплементарная ей новая, в результате чего образуются две дочерние. молекулы, не отличимые от материнской ДНК. Через пять лет М. Мезельсон и Ф. Сталь экспериментально подтвердили этот механизм, а несколько раньше (1956) А. Корнберг открыл фермент ДНК-полимеразу, кщ-орый на расплетенных цепях, как на матрицах, синтезирует новые, комплементарные им цепи ДНК. [c.6]


    Условия, необходимые для транскрипции а) набор трифосфатнуклеоти-дов б) ДНК-зависимая РНК-полимераза - сложный фермент из пяти субъединиц в) наличие специального участка в ДНК - промотора (около 40 пар оснований). Когда РНК-полимераза связывается с промотором, происходит локальное расплетание цепей ДНК и синтез РНК всегда начинается с основания А или Г в -н-цепи ДНК и идет в направлении 3 —>5.  [c.56]

    Направление синтеза ДНК совпадает с направлением расплетания исходной двойной спирали лишь для одной нэ новосиитеэнроваиных цепей (ведущая цепь). Вторая цепь <ннтезируется прерывисто, сравнительно короткими фрагментами. Инициация каждого такого фрагмента Оказаки происходит лишь после того, как образуются достаточно лротяженный однонитевой участок матрицы [c.53]

    Последовательность ориджина способствует необходимому для начала синтеза ДНК расплетанию двойной спирали ДНК и служит участком сборки, посадки на ДНК активного комплекса белков, осуществляющих репликацию. Чем же ориджины репликации отличаются от прочих последовательностей ДНК, что определяет их специфичность Для разных репликонов ответ может быть различным, однако часто оказывается, что специфичность ориджина определяется специальным белком, участвующим в инициации синтеза ДНК и способным избирательно связываться с последовательностью нуклеотидов данного ориджина. Наличие на одном репли-коне ориджина и гена, кодирующего специфичный к нему белок-инициатор, обеспечивает самоподдержаиие этого репликона Б клетке. [c.61]

    Можно думать, что участие ДНК-гиразы в инициации необходимо не только для того, чтобы облегчить белку DnaA задачу расплетания ориджина, ио и для проверки целостности цепей ДНК — будущих матриц для синтеза действительно, сверхспирализовать Какую-либо кольцевую ДНК (или участок ДНК, концы которого фиксированы) можно лишь в том случае, если эта ДНК не содержит разрывов. [c.61]

    На стадии элонгации в ДНК расплетено примерно 18 и. п. Примерно 12 нуклеотидов матричной нити ДНК образует гибридную спираль с растущим концом цепи РНК (рис. 84). По. мере движения РНК-полимеразы по матрице впереди нее происходит расплетание, а позади — восстаномение двойной спирали ДНК. Одновременно освобождается очередное звено растущей цепи РНК из ко.мплекса с матрицей и РНК-полимеразой. Эти перемещения должны сопровождаться относительным вращением РНК-полимеразы и ДНК- Трудно себе представить, как это может происходить в клетке, особенно при транскрипции хроматина. Поэтому не исключено, что для предотвращения такого вращения двигающуюся по ДНК РНК-полимеразу сопровождают топоизомеразы. [c.139]

    В основе некоторых способов инициации цепи ДНК на дуплексной матрице лежат те же механизмы, о которых шла речь в предыдущем разделе. Прежде всего это относится к терминальной инициации, для осуществления которой могут использоваться как самозатра-вочный механизм, так и нуклеотид-белковая затравка. В первом случае предварительно необходимо перестроить двухспиральный тупой конец в структуру типа заячьи уши (см. рис. 135), как это, по-видимому, происходит у репликативной формы парвови-русной ДНК- Поскольку спонтанная перестройка такого рода в изолированных молекулах ДНК крайне. маловероятна по энергетическим соображениям, постулируется, что в ее осуществлении принимают участие какие-то (пока не идентифицированные) белки. Рис. 136 дает представление о том, как инициацию цепи ДНК на двухнитевой матрице можно обеспечить при помощи нуклеотид-белковой затравки. Вполне возможно, что и в этом случае некие белки способствуют расплетанию (или по крайней мере дестабилизации) концевых участков дуплексного генома. [c.265]

    Еще разнообразнее наборы белков, участвующие в синтезе ДНК на двухнитевых матрицах. В этом случае поми.мо уже перечисленных, требуются, в частности, хеликазы, способствующие расплетанию родительского дуплекса в области репликационной вилки (см. гл. И), набор с рментов, необходимых для синтеза отстающей цепи (праймазы ферменты, удаляющие РНК-затравку ДНК-лигазы, сшивающие фрагменты Окадзаки), а также — часто — топоизомеразы, снимающие избыточное внутримолекулярное напряжение, возникающее в результате расплетания матричного дуплекса. В обще.м, процесс элонгации при репликации вирусных ДНК-геномов не отличается принципиально от этого процесса при синтезе клеточных ДНК- Единственно, что следует отметить,— это использование (в некоторых системах) вирус-специфических репликационных белков, которые по своей функции аналогичны белка.м, и.меющимся в незараженной клетке. [c.266]

    Механизм действия ДНК-полимеразы I, описываемый уравнением (15-2), обеспечивает лишь прямой путь образования комплементарной цепи ДНК каким образом может осуществляться копирование двухцепочечной ДНК, с помощью этого механизма нельзя объяснить. Одна из проблем состоит в том, что для копирования двухцепочечной ДНК две цепи должны расплестись и отделиться одна от другой. Если расплетание цепей и репликация происходят лишь в одной репликационной вилке, как это следует нз экспериментов Кернса, то для того, чтобы хромосома Е. oli могла полностью реплицироваться за 20 мин, вся молекула должна раскручиваться со скоростью 300 оборотов в 1 с. Кроме того, для осуществления процесса репликации в хромосоме должно быть образование типа шарнира (или, по крайней мере, разрыв в одной из цепей) [уравнение (15-3)]. [c.197]

    В хромосоме Е. oli содержится ДНК длиной больше 1 мм, упакованная в клетке, длина которой пе превышает 2 мкм. Длина диплоидной ДНК, содержащейся в клетках человека, размер которых не превышает 20 мкм, достигает 1,5 м. Расплетание двойных спиралей ДНК в репликационных вилках требует быстрого вращения цепей (разд. А, 3,а). Хотя с чисто химической точки зрения процесс расплетания 3000 оснований за одну секунду не представляет проблемы, все же трудно представить себе, как две копии реплицируемой хромо-со.мы даже в клетках Е. oli могут разделяться, не запутываясь. Частично ответить на этот вопрос можно, если вспомнить о существовании ДНК-расплетающпх белков (разд. Д, 5, в), а также ДНК-релаксирую-щих , или раскручивающих , ферментов [185, 186] (см. также рис. 2-27). Важную роль играет при этом также организация хромосомы. [c.271]


    Комплекс нативной 40S субчастицы с инициаторной метионил-тРНК (включающий некоторые факторы инициации и ГТФ) вступает в ассоциацию с мРНК. На этом этапе абсолютно необходимым оказывается eIF-3. Механизм его действия не ясен. Предполагается, что он, будучи связанным с нативной 40S субчастицей, участвует в формировании центра, узнающего мРНК. Ему приписывают также функции белка, способствующего расплетанию вторичной структуры матричного полинуклеотида в [c.250]

    С комплексом DnaA-бел ка с расплетенным оПС связывается-С паС-белок, после чего с образовавшимся комплексом может связаться хеликаза DnaB, которая обеспечивает дальнейшее расплетание ориджина, необходимое для сборки реплисомы (рис. 36). [c.61]


Смотреть страницы где упоминается термин ДНК расплетание: [c.52]    [c.52]    [c.60]    [c.91]    [c.139]    [c.271]    [c.252]    [c.139]    [c.234]    [c.249]    [c.251]    [c.52]    [c.52]    [c.60]    [c.91]    [c.139]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.25 , c.26 ]




ПОИСК







© 2025 chem21.info Реклама на сайте