Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РНК-затравки

    Для синтеза фрагментов Оказаки необходима РНК-затравка [c.904]

    Наличие З -ОН РНК-затравки, синтезируемой на основе ДНК. [c.55]

    Оказывается, новосинтезированные цепи ДНК всегда содержат на 5 -конце несколько рибонуклеотидов. Иными словами, сннтеэ ДНК начинается с синтеза РНК- РНК-затравку для синтеза ДНК образует специальный фермент, называемый ДНК-праймазой (от англ. праймер — затравка). Праймаза может быть отдельны. 1 ферментом, как у бактерий, илн входить в качестве субъединицы в ДНК-полимеразу (как у ДНК-полимеразы а животных). В любом случае праймаза — это фермент, отличный от РНК-полимераз, синтезирующих разнообразные клеточные РНК и тоже способных инициировать синтез новых полинуклеотидных цепей (см. гл. VII). Почему же в таком случае для инициации цепей ДНК используются рибонуклеотиды Возможное объяснение состоит в том, что в ходе эволюции прай.чазы произошли из РНК-полимераз. Но есть и другое, функциональное, объяснение. Поскольку требования инициа- [c.51]


    III удлиняет эти затравки до тех пор, пока не упрется в предыдущую затравку, т. е. синтезирует фрагменты Оказаки. Затем действует ДНК-полимераза I, которая продолжает удлинять фрагменты Оказаки, одновременно гидролизуя РНК-затравку предыдущего Фрагмента, используя свою 5 -экзонуклеазную активность. После действия ДНК-полимеразы I между двумя соседними фрагментами остается только одноцепочечный разрыв, который зашивает ДНК-лигаза. Таким образом, в репликативной вилке одновременно работают около 20 разных полипептидов, осуществляя сложный, высо-Коупорядоченный и энергоемкий процесс. Не говоря уже о том, что Каждый нуклеотид переходит в ДНК из богатого энергией предшественника, множество. молекул АТР тратится на действие хеликаз, на синтез РНК-затравок, которые затем удаляются, на активацию ДНК-полимеразы III при переходе на каждый новый фрагмент Оказаки запаздывающей цепи и на работу топоизомераз по Раскручиванию взаимозакрученных цепей ДНК (см. ниже). Такова цена высокой точности и скорости репликации. [c.57]

    ДНК-полимераза III начинает синтез от РНК-затравки [c.906]

    Получены доказательства, что образование каждого фрагмента Оказаки требует наличия короткого затравочного комплементарного праймера — участка РНК, синтез которого катализируется праймазой. Затем при участии ДНК-полимеразы П1 синтезируются длинные участки ДНК. РНК-затравки далее вырезаются при участии ДНК-полимеразы I, а свободные места их (бреши) замещаются (достраиваются) комгшементарными дезоксирибонуклеотидами под действием той же ДНК-полимеразы I наконец, сшивание разъединенных участков отстающей цепи осуществляется при помощи ДНК-лигаз. Подобный механизм челночного синтеза ДНК легко объясняет фактические данные о накоплении коротких фрагментов ДНК у Е. oll во время репликации ДНК. [c.483]

    Для синтеза ДНК необходима РНК-затравка, которую называют праймером. Обычно затравка содержит от 10 до 60 нуклеотидов и синтезируется РНК-полимеразой на родительской ДНК, используя ее как матрицу. [c.55]

    Прямые линии — ДНК волнистые — РНК. После удаления РНК-затравки остается брешь, которую трудно заполнить [c.267]

    Что касается инициации на внутренних участках двухнитевой матрицы, то здесь также нужно различать два основных способа. Во-первых, первичная РНК-затравка может быть образована праймазой (или — реже — ДНК-зависимой РНК-полимеразой). Однако синтез затравки возможен только в том случае, если матрица соответствующим образом подготовлена. Подготовка включает взан.модействие. между вирус-специфическими белками, регулирую-щи.ми инициацию раунда репликации, и специфическими участками инициации репликации ori (от англ. origin — начало) в молекуле ДНК, Напри.адр, с участком оп в ДНК фага >. первично взаимодействует фагоспецифический белок — О, с белко.м О взаи.модей- твует другой фагоспецифический полипептид — белок Р, который свою очередь образует ко.мплекс с одной из клеточных хеликаз — 1родукто.м гена dna В. [c.265]


    Еще разнообразнее наборы белков, участвующие в синтезе ДНК на двухнитевых матрицах. В этом случае поми.мо уже перечисленных, требуются, в частности, хеликазы, способствующие расплетанию родительского дуплекса в области репликационной вилки (см. гл. И), набор с рментов, необходимых для синтеза отстающей цепи (праймазы ферменты, удаляющие РНК-затравку ДНК-лигазы, сшивающие фрагменты Окадзаки), а также — часто — топоизомеразы, снимающие избыточное внутримолекулярное напряжение, возникающее в результате расплетания матричного дуплекса. В обще.м, процесс элонгации при репликации вирусных ДНК-геномов не отличается принципиально от этого процесса при синтезе клеточных ДНК- Единственно, что следует отметить,— это использование (в некоторых системах) вирус-специфических репликационных белков, которые по своей функции аналогичны белка.м, и.меющимся в незараженной клетке. [c.266]

    Как уже было сказано, ряд фагов (фХ174, 04, М13 и др.) имеют однонитевой кольцевой геном. Вскоре после попадания такого генома в клетку он превращается в кольцевой ковалентно-непрерывный дуплекс (или, как говорят, в репликативную форму). Эго превращение включает ряд стадий 1) образование затравки 2) элонгацию комплементарной цепи, осуществляе.мую клеточной ДНК-полнмеразой П1 3) удаление РНК-затравки, которое производится, по-видимому, за счет 5 -экзонуклеазной активности клеточной ДНК-полимеразы I 4) достраивание комплементарной цепи 5) лигирование концов комплементарной цепи ДНК-лигазой и 6) внесение сверхспиральных витков в ковалентно-непрерывный дуплекс прн помощи гиразы. Обратим внимание, что все Арменты, обеспечивающие перевод родительского генома в репликативную форму, имеют клеточное происхождение. [c.272]

    Известно, что для инициации процесса репликации ДНК фага ФХ необходимо наличие в геноме фага специфического гена А. Недавно было показано, что этот ген детерминирует синтез белка с мол. весом 56 000 — специфической эндонуклеазы надрезающей вирусную цепь RF-формы, что необходимо для начала процесса репликации [209]. По-видимому, после появления такого разрыва стимулируется синтез небольшого участка РНК-затравки. Репликация ДНК протекает в большинстве случаев в двух направлениях (разд. Д,2), однако репликативная форма Ф X образуется, вероятно, только в одном направлении по механизму разматывающегося рулона (rolling ir le) [210]. В соответствии с этим механизмом [уравнение (15-9)], по мере того как вновь образующаяся цепь вирусной ДНК синтезируется вдоль комплементарной (минус) цепи-матрицы, исходная вирусная ДНК (плюс-цепь) вытеснется в виде одноцепочечного хвоста . [c.278]

    Чтобы обеспечить образование непрерывной цепи ДНК из многих таких фрагментов, в действие вступает особая система репарации ДНК, удаляющая РНК-затравку и заменяющая ее на ДНК. У бактерий РНК-затравка удаляется нуклеотид за нуклеотидом благодаря 5 -> З -экзонуклеазной активности ДНК-полимеразы. При этом каждый отщепленный рибонуклеотидный мономер замещается соответствующим дезоксирибонуклеотидом (в качестве затравки используется З -конец синтезированного на старой цепи фрагмента). Завершает весь процесс фермент ДНК-лигаза, катализирующий образование фосфодиэфирной связи между группой З -ОН нового фрагмента ДНК и 5 -фосфатной группой предыдущего фрагмента. Образование этой связи требует затраты энергии, к-рая поставляется в ходе сопряженного гидролиза пирофосфатной связи кофермента-никотинамидадениндинуклеотида (в бактериальных клетках) или АТФ (в животных клетках и у бактериофагов). [c.253]

    Оказаки. Таким образом, синтез ДНК на двух матричных цепях исходной молекулы заметно различается. Новосинтезированная цепь которая синтезируется непрерывно, называется ведущей (англ. lea- ding), другая цепь называется запаздывающей (англ. lagging). Каждый фрагмент Оказаки имеет на 5 -конце несколько рибонуклеотидов— результат действия праймазы. Характерный размер фрагментов Оказаки различается для бактерий и эукариот у бактерий, они имеют длину около 1000 нуклеотидов, у эукариот они короче, порядка 100 нуклеотидов. Через некоторое время после синтеза РНК-затравки удаляются, бреши застраиваются ДНК-полимеразой,. а фрагменты сшиваются в одну ковалентно-непрерывную цепь ДНК предназначенным специально для этого ферментом, ДИК-лигазой. [c.54]

    Фермент ДНК-полимераза I удаляет РНК-затравку и достраивает фрагменты, а ДНК-лигаза соединяет между собой соседние фрагменты Оказаки фосфодиэфирной связью, которая образуется между З -гидроксилом одного и -фосфатом другого фрагментов. Терминация синтеза ДНК определяется специфической последовательностью. Детали этого процесса пока неизвестны. Наконец, две дочерние хромосомы, образовавшиеся после репликации, прикрепляются к мембране. Рост участка мембраны между точками прикрепления раздвигает их, и разделение клеток заверщает процесс. [c.410]

    Обычно РНК-затравка состоит всего лишь из нескольких рибонуклеотидных остатков (рис. 28-11), к которым затем ДНК-полимераза III присоединяет 1000-2000 дезоксирибонуклеотидных остатков, и в результате образуется фрагмент Оказаки. Естественно, нуклеотидная последовательность новосинтезированного фрагмента Оказаки комплементарна нуклеотидной последовательности соответствующего участка цепи-матрицы. После завершения синтеза фрагмента Оказаки РНК-затравка удаляется, [c.904]



Смотреть страницы где упоминается термин РНК-затравки: [c.54]    [c.54]    [c.57]    [c.62]    [c.64]    [c.267]    [c.309]    [c.198]    [c.277]    [c.277]    [c.253]    [c.253]    [c.54]    [c.62]    [c.64]    [c.267]    [c.309]    [c.606]    [c.170]    [c.905]    [c.906]    [c.923]    [c.1004]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.57 , c.62 ]




ПОИСК







© 2025 chem21.info Реклама на сайте