Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

вирус-специфические

    Особенность фага N4 — наличие вирус-специфической РНК-полимеразы в составе зрелых вирионов. Этот фермент — крупный белок (УИ, 320 ООО) — продукт позднего фагового гена. Он попадает в заражаемую клетку вместе с вирусной ДНК и обеспечивает транскрипцию ранних генов. Среди продуктов ранних генов имеется вторая вирус-специфическая РНК-полимераза, построенная из трех относительно некрупных неидентичных полипептидных цепей. Эта вторая РНК-полимераза узнает промоторы средних генов. Поздние гены фага N4 транскрибируются, по-видимому, РНК-полимеразой . сои. [c.299]


    Необходимость регуляции транскрипции в вирусных системах связана с тем, что потребность в разных вирус-специфических белках разная структурные белки требуются, как правило, в больших количествах, чем белки-ферменты. Кроме того, на ранних стадиях инфекции нужны преимущественно белки, обеспечивающие репликацию генома, а на поздних — белки, принимающие участие в формировании вирионов. Поэто.му биологически целесообразно, чтобы разные вирусные гены считывались с разной эффективностью и чтобы эта эффективность изменялась по ходу репродукции вируса. [c.290]

    Общая схема репликации двухнитевой аденовирусной ДНК представлена на рис. 138. К синтезированному в зараженной клетке вирус-специфическому терминальному белку (точнее — к его более крупному предшественнику) ковалентно присоединяется нуклеотид, и этот нуклеотид-белковый комплекс выполняет роль затравки. Синтез новой цепи может начаться на любом конце генома, так как в силу наличия инвертированных концевых повторов оба конца Молекулы аденовирусной ДНК идентичны. Синтез дочерней цепи сопровождается вытеснением одной из родительских цепей. После Полного вытеснения этой цепи высвобождается ее З -конец, к которому присоединяется новая нуклеотид-белковая затравка. Син-1 з комплементарной цепи происходит теперь на однонитевой матрице, т.е. по репарационному типу. Результат этих двух актов — синтеза с вытеснение.м на родительском дуплексе и репарационного синтеза на вытесненной цепи — полностью эквива- [c.267]

    На молекулах репликативной формы ДНК происходит синтез не только (+)цепей ДНК, но и вирус-специфических мРНК- Следует сказать, что синтез мРН К должен предшествовать появлению новых молекул (+)цепей ДНК, так как без вирус-специфических мРНК в зараженной клетке не может появиться белок А. Трансляция фаговых мРНК приводит к накоплению вирус-специфических белков, в том числе и структурных, которые — при достаточной концентрации — начинают превращаться в сложные структуры— предшественники вирусного капсида. Генерируемые на этой стадии (+)кольца в результате специфических взаимодействий с белками фага вовлекаются в процесс сборки вириона. Тем самым предотвращается ставший уже ненужным переход -Ь)цепей в репликативную фор.му. [c.274]

    Сердцевина содержит, в частности, многие десятки молекул вирус-специфической ДНК-зависимой РНК-полимеразы. Этот крупный многокомпонентный фермент распознает промоторы ранних генов. Промоторы сильно обогащены А-Т-парами и удалены от стартовой точки транскрипции примерно на 30 п. н, клеточные РНК-полимеразы эти промоторы не узнают . Регуляторные элементы типа энхансеров в геноме вируса осповакцины не описаны. [c.307]


    После начала репликации вирусного генома транскрипция мн -гих (хотя и не всех) ранних генов угнетается и активируется считывание поздних генов. Промоторы поздних н ранних генов различны в частности, первые как будто несколько беднее А-Т-парами, чем вторые. Считают, что поздние промоторы узнаются модифицированной вирус-специфической РНК-полимеразой модификация заключается в том, что в состав этого фермента включается субъединица клеточной РНК-полимеразы П. [c.307]

    После трансляции вновь синтезированных мРИК и накопления соответствующих белков начинается собственно репликация генома ВВС. Сначала синтезируются точные, полноразмерные (+)копии вирусного генома. Для этого необходимо подавить буксование РНК-полимеразы на полиуридиловых последовательностях матрицы, а также внутреннюю терминацию. Предполагают, что такое регуляторное переключение происходит в результате взаимодействия вирус-специфических белков (вероятно, белка N) с растущей (+)це-пью. Во всяком случае, все имеющиеся в зараженной клетке полноразмерные молекулы (+)РНК находятся там в виде РНП, сходного по структуре с РНП, содержащим геномную (—)РНК. В заключение на полноразмерной (+)РНК синтезируются (—)нити, которые включаются в состав дочерних вирионов. [c.325]

    Отметим, что некоторые вирусные геномы кодируют собственные вирус-специфические праймазы (например, у фагов Т4 и Т7). [c.263]

    При другом способе терминальной инициации роль затравкн выполняет белок, точнее — ковалентное соединение белка с нуклеотидом. Такое соединение возникает в результате образования фосфодиэфирной связи между 5 -гидроксилом дезоксирибонуклео-тида (например, ёСМР) и гидроксилом оксиамииокислоты (например, серина) специального, так называемого терминального белка. В изученных вирусных системах терминальный белок — это всегда вирус-специфический (т. е. закодированный в вирусном геноме) полипептид, и фермент, осуществляющий присоединение нуклеотида, также всегда имеет вирус-специфическую природу. Нуклео-тид-белковый комплекс взаимодействует с З -концом одноцепочечной вирусной ДНК-матрицы при этом нуклеотид, входящий в комплекс с терминальным белком, комплементарен З -концевому нуклеотиду матрицы и служит затравкой, к которой присоединяются последующие нуклеотиды (рис. 136). Ясно, что к 5 -концу синтезированной таким образом цепи ДНК будет ковалентно присоединен белок. Рассмотренный способ инициации цепи ДНК реализуется, например, у аденовирусов и у фага ф29, у которых однонитевые ДНК-матрицы образуются в процессе репликации двунитевого гено-.ма (с.м. с. 267). [c.264]

    Что касается инициации на внутренних участках двухнитевой матрицы, то здесь также нужно различать два основных способа. Во-первых, первичная РНК-затравка может быть образована праймазой (или — реже — ДНК-зависимой РНК-полимеразой). Однако синтез затравки возможен только в том случае, если матрица соответствующим образом подготовлена. Подготовка включает взан.модействие. между вирус-специфическими белками, регулирую-щи.ми инициацию раунда репликации, и специфическими участками инициации репликации ori (от англ. origin — начало) в молекуле ДНК, Напри.адр, с участком оп в ДНК фага >. первично взаимодействует фагоспецифический белок — О, с белко.м О взаи.модей- твует другой фагоспецифический полипептид — белок Р, который свою очередь образует ко.мплекс с одной из клеточных хеликаз — 1родукто.м гена dna В. [c.265]

    Для образования первой затравки на молекуле ДНК SV40 необходимо присоединение к ori вирус-специфического белка — так называемого большого Т-антигена, который выполняет функции хеликазы, Взаи.модействие между ori и специфическими белками создает необходимые условия для синтеза затравки ферментами, которые умеют это делать, обычно праймазой. Однако в некоторых системах (в частности, у того же фага л) требуется дополнительное активирование оп. Эта цель может достигаться, например, тогда, когда в участке ori происходит транскрипция. Для такой транскрипционной активации важен именно сам акт транскрипции, а не ее продукты — РНК или белки. Считается, Что в процессе транскрипции ослабляется связь между комплементарными цепями когда такое ослабление захватывает участок ori. Он становится более доступным для праймазы. [c.265]

    Элонгация (удлинение) цепи ДНК осуществляется ДНК-зависи-мыми ДНК-полимеразами. В этой реакции участвуют также и вспомогательные белки, наборы которых могут различаться в разных системах и на разных этапах репликации одного и тогд же генома. В частности, различны эти наборы при синтезе ДНК на однонитевой матрице (или, как говорят, при репарационном синтезе) и на двухнитевой матрице (при синтезе с вытеснением цепи). В первом случае важным вспомогательным участником реакции являются ДНК-связывающие белки, которые превращают матрицу в дезоксирибонуклеопротеид. При этом исчезают многие из элементов вторичной структуры матрицы, она как бы выпрямляется , что облегчает поступательное и процессивное движение ДНК-полимеразы. Сходную роль — помощь ДНК-полимеразе в преодолении препятствий , в частности шпилечных структур на матрице,— могут играть и другие дополнительные (в том числе и вирус-специфические) репликационные белки. [c.266]

    Еще разнообразнее наборы белков, участвующие в синтезе ДНК на двухнитевых матрицах. В этом случае поми.мо уже перечисленных, требуются, в частности, хеликазы, способствующие расплетанию родительского дуплекса в области репликационной вилки (см. гл. И), набор с рментов, необходимых для синтеза отстающей цепи (праймазы ферменты, удаляющие РНК-затравку ДНК-лигазы, сшивающие фрагменты Окадзаки), а также — часто — топоизомеразы, снимающие избыточное внутримолекулярное напряжение, возникающее в результате расплетания матричного дуплекса. В обще.м, процесс элонгации при репликации вирусных ДНК-геномов не отличается принципиально от этого процесса при синтезе клеточных ДНК- Единственно, что следует отметить,— это использование (в некоторых системах) вирус-специфических репликационных белков, которые по своей функции аналогичны белка.м, и.меющимся в незараженной клетке. [c.266]


    Необычной особенностью репликации ДНК фага Ми является то, что, во-первых, все вновь синтезированные копии фагового генома оказываются в состоянии профага (т. е. включены в клеточную хромосому) и, во-вторых, фагоспецифическая последовательность нуклеотидов, которая послужила матрицей для образования дочерних геномов, остается в клеточной хромосоме на том же месте, где она находилась до репликации. Другими словами, репликация идет без выщепления резидентного профага и, по существу, представляет собой репликативную транспозицию. Вероятная схема этого процесса представлена на рис. 152. Фагоспецифические белки обеспечивают сближение концов профага, интегрированного в клеточную хромосому (аналогично тому, как они это делают с проникшей в клетку молекулой ДНК фага). Участок хромосомы, в котором сближены концы прсфага, контактирует с другим участком этой же хромосомы или с какой-либо другой находящейся в клетке молекулой ДНК. В этом свежем участке появляется ступенчатый разрыв (два однонитевых разрыва на расстоянии 5 п. н.) возникают однонитевые разрывы и по обеим границам резидентного профага. Выступающие 5 -концы клеточной ДНК соединяются с З -концами вирус-специфических последовательностей, а З -концы клеточной ДНК выполняют роль затравки. Таким образом, инициация раунда репликации представляет собой в этом случае вариант рекомбинационной инициации- В результате Полуконсервативной репликации и последующих процессов репарации в клеточной хромосоме оказывается две копии профага в каждой из них одна чз цепей пронсходнт из резидентного профага, а вторая синтезирована заново. При повторении этого процесса Количество профагов в клеточной хромосоме может достигать сотни. [c.287]

    Встраивание вирусного генома в клеточную хромосому — обязательная стадия репродукции ретровирусов независимо от того, обладают ли они онкогенным (трансформирующим) действием. Реплици-руясь в.месте с клеточной ДНК при митозе, вирус-специфическая ДНК — провирус — передается в дочерние клетки. [c.313]

    Говоря о вирус-специфических репликационных белках, следует подчеркнуть, что во многих случаях в незараженной клетке имеются белки с аналогичной функцией. Причем в искусственных бесклеточных системах можно наблюдать, как клеточные ферменты работают на вирусной ДНК, а вирусные ферменты — на клеточной ДНК- Однако in vivo в зараженной вирусом клетке ситуация иная- Так, если вирус кодирует собственную ДНК-полимеразу (напри.мер, фаг Т4 нли вирус герпеса), то репродукцию такого вируса может обеспечить только вирусный фермент и этот вирусный фер.мент не катализирует синтез клеточной ДНК в зараженной клетке. Это кажущееся противоречие — высокая специфичность по отношению к матрице л vivo и низкая л w/ro — имеет [c.282]

    Р еном фага Ми — линейная двухнитевая молекула ДНК, содержащая свыше 30 т. п. н.— имеет важную особенность как левый (Ц, так и правый (Н) концы молекулы содержат клеточные, а не Вирус-специфические нуклеотидные последовательности. В определенном смысле можно сказать, что геном фага Ми всегда находится в форме профага, поскольку он заключен между последовательностями клеточных ДНК. У индивидуальных молекул вирусной ДНК Ь-концы разные и Н-концы разные, даже если популяция геномов образовалась в одной клетке. На границе Ь- и Н-концов С вирус-спецнфической ДНК обнаруживается прямой повтор клеточной ДНК длиной в 5 п. н. в разных молекулах вирусном ДНК [c.285]

    Последующие события в схематическом виде представляются следующим образом (рис. 151 . Участок фаговой ДНК со сближенными концами контактирует с каким-либо участком клеточной хромосомы, причем это может быть любой (или почти любой) участок клеточной ДНК. Далее под действием вирус-специфических белков происходит рекомбинация. В обе цепи клеточной ДНК на расстоянии пяти нуклеотидов вносятся однонитевые разрывы кроме того, однонитевые разрывы вносятся в вирусную ДНК — по границе между Ь- и К-концами и вирус-специфическими последовательностями. При этом выступающие 5 -концы клеточной ДНК ковалентно соединяются с З -концами вирус-специфической ДНК. Старые Ь- и К-концы фаговой ДНК удаляются, и после репарации брешей фаговый геном оказывается встроенным в клеточную хромосому и окруженны.м вновь появившимся повтором клеточной ДНК длиной 5 п. н. Возможны две разные ориентации профага относительно клеточных генов расположение генов в профаге н в ДНК вирусной частицы одинаково. [c.287]

    Не исключено, что в регуляции экспрессии поздних генов 5У40 принимает участие и аттенуация транскрипции. РНК-полимераза П и на ранней стадии с некоторой эффективностью узнает поздний промотор, однако значительная часть образующихся при этом транскриптов обрывается (терминируется) после считывания 90 нуклеотидов. Полагают, что в этой области имеется терминирующий сигнал, эффективность которого регулируется балансом терминирующих и антитерминирующих факторов, в число которых могут входить и вирус-специфические белки. [c.302]

    Транскрипция вирусного генома осуществляется в ядре клеточными РНК-полимеразами при этом подавляющее большинство генов транскрибируется РНК-полимеразой II. Лишь два класса низкомолекулярных вирус-специфических РНК — УА1 и УА2 — синтезируются при помощи РНК-полимеразы III (эти РНК, по-ви-ди-мому, принимают участие в регуляции трансляции вирусных матриц). [c.303]

    В вирусной РНК записана информация для синтеза по крайней мере трех групп вирус-специфических белков структурных белков сердцевины вириона (Qag-белков), ферментативных белков, принимающих участие в обратной транскрипции вирусного генома и в интеграции вирус-специфической ДНК и клеточной хромосомы (продуктов гена pol), и белков, входящих в состав наружной липо-протеидной оболочки вириона (Env-белков). У некоторых ретровирусов есть дополнительные гены нередко наблюдаются также всякого рода перестройки генома, что обычно ведет к дефектности вируса, т. е. к его неспособности размножаться без вируса-помощника. [c.309]

    Не все детали приведенной схемы образования вирус-специфн ческой ДНК строго доказаны, и в дальнейшем в нее, возможно, будут внесены те или иные поправки. Тем не менее эта схема достаточно хорошо иллюстрирует общий принцип. Весьма важно, что схема объясняет одну чрезвычайно существенную особенность структуры вирус-специфических ДНК ретровирусов — молекулы вирусных ДНК длиннее молекул вирусных РНК, которые послужили матрицей для обратной транскрипции. Действительно, к 5 -концу (-f)uenH вирусной ДНК добавилась последовательность иЗ, а к З -концу этой цепи — последовательность u5. В результате на концах молекулы вирус-специфической ДНК появился длинный (несколько сотен нуклеотидов) концевой повтор (ДКП, или LTR), имеющий структуру иЗгиЬ (рис. 160). [c.312]

    Многие вирусы имеют геном в виде (—)нитн РНК. У некоторых таких вирусов геном представлен единой непрерывной молекулой, а у других он сегментирован, т. е. состоит из нескольких молекул. Общим свойством вирусов с (—)РНК-геномом является то, что в состав их вирусных частиц входит РНК-полимераза, способная копировать РНК-матрицу. Биологический смысл такой организации понятен. Поскольку, по определению, (—)РНК не может выполнять функции мРНК, для образования своих мРНК вирус должен внести в клетку не только геном, но и фермент, умеющий снимать с этого генома комплементарные копии. Другое общее свойство этих вирусов заключается в том, что матрицей для репликации / транскрипции является не свободная РНК, а вирусный рибонуклеопротеид (РНП) — молекула РНК, равномерно покрытая вирус-специфическим белком. [c.323]

    Образование линейных молекул вирус-специфических ДНК осуществляется в цитоплазме зараженной клетки. Затем вирусная ДНК обнаруживается в ядре. Здесь линейные молекулы превращаются в кольцевые, причем циркуляризация происходит за счет взамодействия между тупыми концами молекулы. Факторы, обеспечивающие переход линейных молекул в кольцевые, пока не изучены. [c.312]

    ДНК, входящая в состав частиц вируса генатита В,— это молекула, построенная из двух линейных компонентов полноразмерной (—)ни-ти ( 3,2 т. п. н.) с белком, ковалентно присоединенным к 5 -концу, а также сегмента (+)нити (1,7—2,8 т. п. н.). от сегмент содержит участки, комплементарные обоим концам (—)нити, и поэтому удерживает вирионную ДНК в кольцевой форме (рис. 163, а). В вирионе имеется вирус-специфическая ДНК-полимераза, способная достраивать (+)нить до размера полного генома. Геном вируса мозаики цветной капусты крупнее и содержит около 8 т. п. н. это двухнитевая кольцевая молекула, обе цепи которой не непрерывны (рис. 163, б). [c.315]

    Естественно, что помимо субгеномных (+)РНК одним из продуктов репликации / транскрипции должны быть и полноразмерные (геномные) (+)РНК, которые, во-первых, направляют синтез белков, закодированных в 5 -концевом районе генома, а во-вторых, включаются в дочерние вирусные частицы. Полноразмерные (-Н)РНК считываются с такой же (—)матрицы, как и субгеномные мРНК- Динамика образования различных видов вирус-специфических РНК различна синтез (—)РНК более характерен для ранних стадий инфекционного цикла, а синтез (+)РНК — для поздних обнаруживаются и различия в динамике синтеза субгеномных и полноразмерных (+)РНК. Известно, что в этой регуляции принимают участие вирус-специфические белки, но конкретные их функции пока не выяснены, если не считать, что некоторые из них входят в состав РНК-зависимой РНК-полимеразы. [c.323]


Смотреть страницы где упоминается термин вирус-специфические: [c.262]    [c.269]    [c.271]    [c.278]    [c.278]    [c.282]    [c.289]    [c.289]    [c.293]    [c.297]    [c.297]    [c.304]    [c.306]    [c.306]    [c.311]    [c.311]    [c.312]    [c.318]    [c.319]    [c.320]    [c.320]    [c.321]    [c.325]    [c.326]    [c.326]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.262 , c.267 , c.290 , c.309 , c.318 , c.327 , c.331 ]

Молекулярная биология (1990) -- [ c.262 , c.267 , c.290 , c.309 , c.318 , c.327 , c.331 ]




ПОИСК





Смотрите так же термины и статьи:

специфическая

специфическая специфическая



© 2025 chem21.info Реклама на сайте