Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан клатратные соединения

    Одним из клатратных соединений является газированный лед. Опыт показывает, что при охлаждении воды, насыщенный каким-либо газом под давлением, образуется лед, содержащий в своей кристаллической решетке молекулы газа. При этом молекулы Н2О посредством водородных связей образуют многогранники, полости внутри которых достаточно велики, чтобы молекула газа могла в них находиться почти свободно. Выйти из многогранника или войти в уже образовавшийся газо-гидрат молекула не может (рис, 5.21). Поэтому, несмотря на летучесть газов, эти соединения являются относительно устойчивыми. Молекулами-гостьями в гидратах могут быть углекислый газ, аргон, криптон, ксенон, метан, этан, этилен, пропан, циклопропан и др. Гидраты экономичны в смысле хранения газа. В 1 м газового гидрата около 200 м метана. Добыть газ из гидрата очень легко нагреванием. Существует предположение, что большие запасы природного газа хранятся в недрах Земли в форме газогидратов. [c.149]


    Из решеточных клатратных соединений включения можно указать аддукты гидрохинона (см. том П) с SOg, С0-2, Оа, НС1, НВг, H.jS, с метанолом, ацетиленом и др. К типу клатратных соединений относятся также твердые гидраты таких газообразных веществ, как метан, этан, этилен, метилеихлорид, и некоторых простых соединений (например, хлороформа). В этих гидратах каркасную решетку образует вода, к которой включаемые вещества как раз не имеют никакого сродства. [c.845]

    Уже более столетия химикам известны комплексы воды с такими простыми молекулами, как молекулы хлора. Еще Деви обратил внимание на образование комплексов хлор- вода. Однако только в самое последнее время появился ряд работ (см., например, [10] — [12]), прояснивших вопрос о природе этих соединений, которые в настоящее время известны под названием газовые гидраты . К веществам, образующим эти последние, относятся аргон, криптон, ксенон, уже упоминавшийся хлор, закись азота, углекислый газ, метан, этан, этилен и целый ряд других. Оказалось, что эти образования относятся к обширному классу соединений, объединяемых под общим названием клатратные соединения включения или просто клатраты. [c.203]

    Своеобразные криогенные флюидоупоры связаны с многолетнемерзлыми породами. Они развиты в приполярных северных и южных широтах в Гренландии, на севере Сибири, США и Канады и в Антарктиде. Как было упомянуто выше, они одновременно могут являться и коллекторами. Мощность промерзших пород может достигать 700-800 м. В периоды потепления климата толщина этих флюидоупоров постепенно уменьщается до полного исчезновения. Внутреннее строение многолетнемерзлых пород неоднородно, влажность и льдистость распределяются неравномерно. Наряду со льдом присутствует и незамерзшая вода даже при отрицательных температурах, поскольку минерализация ее может быть повышенной. Криогенные покрышки могут содержать газовые включения (метан, этан, пропан, изобутан, двуокись углерода), в том числе в форме клатратных соединений с водой — газогидратов. Как только при данных термобарических условиях (главным образом при повышении давления и низких температурах) концентрация конкретного газа становится достаточной, образуются газогидраты. Наиболее широко распростране- [c.294]

    В настоящее время имеется широкая гамма клатратообразующих веществ для самых различных областей применения в иефтеперераба тывающей и нефтехимической промышленности. Для извлечения различных углеводородов из природного газа можно применять воду, образующую с ни.ми клатраты (так называемые гидраты), Клатратное соединение метана с водой можно хранить при более высокой температуре и меньшем давлении, чем метан. Для обезвоживания природного газа можно использовать различные высокоэффективные твердые осушители, например некоторые избирательные адсорбенты типа силикатов. Такие компоненты нефтезаводских газов, как азот, двуокись углерода или метан, можно связывать в виде клатратов с хинолом или циклодекстрином или при помощи цеолитов. Различные газы. можно хранить в виде клатратов с хинолом или цеолитами или в виде гидратов газа для последующего использования их в химических или физических целях, например для перемешивания. Ряд углеводородов, например пропан, можно также использовать в процессах опреснения морской воды методом клатратообразования [c.104]


    Условия вращения молекул приблизительно сферической формы можно-исследовать, создавая для них искусственное окружение. Один из способов достижения этого заключается в том, чтобы поместить молекулы в полости, которые существуют в клатратных соединениях. Примером может служить исследование теплоемкости метан-хинолклатрата [25]. В Р-форме метан-хинолклатрата полости имеют диаметр около 8 А. Молекулы метана могут, по-видимому, вращаться в этих полостях сравнительно свободно, так как их диаметр меньше 2,5 А. На рис. 20 показана кривая молярной теплоемкости метана в этом клатрате. Здесь же приведена составляющая теплоемкости, обусловленная колебанием молекул метана в полостях, определенная теоретически и по данным аналогичных исследований аргон- и крип-тон-клатратов [26]. Величины v b показаны крестиками и проведенной через них сплошной прямой. На рисунке приведена также составляющая теплоемкости внутренних колебаний молекулы метана Сщ), найденная нри соответствующем отнесении частот. Эта составляющая представлена сплошной прямой, проведенной через зачерненные кружки. Вычитая сумму этих, двух величин из экспериментального значения, получают вращательную- [c.505]

    При проведении калориметрических измерений с клатратным соединением аргон — гидрохинон Парсонаж и Ставли [31] установили, что потеря аргона имеет место при охлаждении образца от комнатной температуры до температуры жидкого воздуха с последующим нагреванием вновь до комнатной температуры. Однако эту потерю можно значительно снизить, если попытаться удалить из кристаллов даже следы растворителя, из которого кристаллизовали клатратное соединение. Было показано [14], что некоторые из клатратных соединений гидрохинона, например с кислородом и окисью углерода, более склонны к разложению при колебаниях температуры, чем клатратное соединение с аргоном. Другие соединения, например клатратное соединение с метаном, менее склонны к разложению. На клатратных соединениях с кислородом и окисью углерода меньше сказывается влияние изменения температур, если занято около половины доступных полостей. Более богатые гостями клатратные соединения при частичном разложении сохраняют Р-структуру. Напротив, имеются сведения, что клатратное соединение со степенью заполнения полостей 0,2 при разложении склонно к переходу в а-форму. [c.590]

    Для воды характерно существование нескольких полиморфных форм льда. В зависимости от температуры и давления, при которых происходит формирование кристаллической фазы, различают 13 видов льда. При обычных условиях устойчивым является лед, имеющий гексагональную структуру. Данными рентгеноструктурного анализа подтверждено, что в кристалле льда, имеющем молекулярную кристаллическую решетку, каждая молекула воды тетраэдрически окружена четырьмя другими молекулами, образующими с ней водородные связи (рис. 3). Подобное соединение молекул воды друг с другом способствует образованию пустот в кристаллической решетке льда. Такой рыхлой структурой объясняется аномально малая плотность воды в твердом состоянии. Свободные полости в структуре льда способствуют образованию клатратных соединений включения клеточного типа. Подобные образования могут давать молекулы таких газов, как С , НзЗ, метан и др. [c.9]

    Уже больше столетия химиков озадачивают комплексы воды с такими простыми молекулами, как молекулы хлора. Еще Деви [78] обратил внимание на образование такого типа молекул хлор — вода, а Фарадей [91] предложил для них формулу СЬ-ЮНгО. Известны работы Штакельберга с сотр. [278—287], Клауссена [54], Полинга, Марша [191] и Никитина [179, 181, 182], проясняющие природу этих соединений, впоследствии известных под общим названием газовых гидратов . К веществам, образующим эти гидраты , относятся аргон, неон, радон, хлор, двуокись серы, хлористый метил, метан и этилен. В результате исчерпывающих исследований появилась возможность описать две кристаллические клатратные формы. Первая форма, структура I, имеет постоянную кубической ячейки, равную 12 А, причем содержится сорок шесть молекул конституционной воды. [c.60]


Смотреть страницы где упоминается термин Метан клатратные соединения: [c.117]    [c.122]    [c.122]    [c.584]   
Основные начала органической химии том 1 (1963) -- [ c.845 ]




ПОИСК





Смотрите так же термины и статьи:

Соединения клатратные



© 2025 chem21.info Реклама на сайте