Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Краевой угол наступающий

    Сущность работы. Введение ПАВ в водные растворы настолько понижает поверхностное натяжение воды и, следовательно, изменяет краевой угол смачивания, что при некоторой концентрации ПАВ раствор из гидрофобного становится гидрофильным наступает полное смачивание, и капля раствора растекается по поверхности. Таким образом, при определенной концентрации ПАВ поверхность твердого тела из гидрофобной становится гидрофильной— происходит инверсия. Задача настоящей работы — найти точку инверсии поверхности парафина, т. е. той концентрации ПАВ, с которой водный раствор становится смачивающим поверхность парафина. [c.47]


    ПАВ могут оказывать сильное влияние на краевой угол и тем самым создавать оптимальные условия смачивания. Частицы на межфазной границе образуют барьер, препятствующий сближению двух капель до расстояний, при которых наступает коалесценция. [c.116]

    Сразу же при расплавлении припоя наступает смачивание паяемой поверхности при этом контактный (неравновесный) угол смачивания за время тз уменьшается от я до из (рис. 48). В процессе продолжающегося нагрева до температуры пайки и последующего охлаждения до температуры затвердевания значение краевого угла смачивания не изменяется. При затвердевании растекшегося припоя его краевой угол увеличивается до значения 134, что вероятно, может быть обусловлено усадочными явлениями и увеличением поверхностного натяжения при переходе металла из жидкого в твердое состояние. [c.243]

    Однако эта работа фактически не зависит от поверхностного натяжения жидкости на границе с газовой средой 01,2. Основным фактором, определяющим смачивание и затекание жидкости в капиллярный зазор, является сила сцепления между поверхностью основного металла и расплавом флюса, т. е. разность 01,3—02,з- Поскольку определить значение поверхностного натяжения твердого тела 01,3 и поверхностное натяжение на границе жидкость— твердое тело 02,3 трудно, то определяют поверхностное натяжение жидкости 01.2 и краевой угол смачивания. Разность 01,3—02,3 играет очень большую роль в процессе флюсования. От ее численного значения зависит возможность и характер смачивания расплавленным припоем покрытой флюсом поверхности основного металла. Если разность 01,3—02,3 для основного металла и расплава флюса равна или больше 01,3—02,3 для основного металла и расплава припоя, то припой остается в массе флюса, контакт с поверхностью основного металла не достигается и, следовательно, смачивания припоем не наступает. В этом случае расплавленный припой в капиллярный зазор не течет и, следовательно, не вытесняет из него расплав флюса. [c.47]

    С феноменологической точки зрения процесс адсорбции в одиночном аппарате с неподвижным слоем и в каскаде последовательно соединенных адсорберов протекает идентично. Специфика работы многоступенчатых адсорбционных установок заключается в цикличности отключения колонны, стоящей первой по ходу движения потока и содержащей насыщенный поглощаемым веществом активный уголь, и подсоединения вместо нее новой колонны со свежим углем к стоявшему ранее последним аппарату. Поэтому динамика сорбции в каскаде аппаратов, как и в случае одиночного адсорбера, описывается уравнениями баланса массы и кинетики адсорбции с соответствующими начальными и краевыми условиями. Основываясь на этом, мы провели теоретический и экспериментальный анализ работы каскада аппаратов. Было доказано, что при выпуклых изотермах адсорбции стационарный режим наступает уже на втором цикле работы каскада, причем степень отработки слоя адсорбента в первой по ходу движения потока колонне на всех циклах практически одинакова. Полученные выводы о закономерностях работы каскада аппаратов в случае выпуклых изотерм позволили перейти к рассмотрению асимптотически стационарного режима процесса сорбции с целью получения аналитических зависимостей для расчета многоступенчатых установок. Решение поставленной задачи было найдено в виде распространяющейся волны по аналогии с тем, как это было сделано в известных работах А. А. Жуховицкого, Я. Л. Забежинского, А. Н. Тихонова. Для частного случая, когда выпуклая изотерма сорбции описывается уравнением Ленгмюра, для внешне- и внутридиффузионного механизма массопереноса получены соотношения, позволяющие производить расчет каскада аппаратов с плотным слоем без применения ЭВМ. [c.179]


    При НИЗКИХ температурах способность воды смачивать некоторые минералы снижается. Это особенно заметно при использовании талой воды. Так, например, краевой угол смачивания свежеталой водой типично гидрофильного кварца достигает 60°. Можно предполоншть, что в этих условиях вследствие упорядоченности структуры воды энергия диполей направлена в основном на взаимодействие друг с другом, а связь воды с поверхностью минералов ослабевает [56, стр. 25]. В присутствии электролитов заметная гидрофобизация кварцевых частиц наступает лишь при высоких концентрациях электролитов — более 1 г-экв1л [57]. [c.52]

    Возможность, которую необходимо рассмотреть, заключается в том, что в окрестности Р° наступает кельвиновская конденсация в складках и впадинах поверхности, так что поверхность на самом деле состоит из многочисленных пятен или лужиц жидкого адсорбата. Для индивидуальной впадины модель представлена на рис, 5,9. В качестве формы впадины принята фигура вращения представленного профиля, и при заданном Р/Р° жидкий адсорбат занимает ее до такой глубины, что кривизна мениска удовлетворяет соотношению RT n(P°tP) =2yVIRi, где V—молярный объем жидкости и Ri — радиус кривизны мениск контактирует со стенками впадины, образуя макроскопический краевой угол. Мы установили, что форму изотермы нельзя воспроизвести, задавая какой-либо один профиль впадины — это можно сделать, только задавая распределение по формам впадин. Однако при этом число параметров подгонки велико, и трудно оценить действительную значимость вклада капиллярной конденсации. [c.105]

    Так как процесс полива характеризуется в отличие от явлений статического смачивания значительной скоростью перемещения мениска по отношению к входящему в поливную кювету участку основы, то в нем мы можем изучать явления кинетического смачивания в функции скорости движения наступающего мениска (или периметра смачивания). Хотя в физикохимической литературе и изучалась (например, Аблеттом) зависимость наступающего краевого угла от скорости перемещения мениска, но, насколько нам известно, даже не упоминается, не говоря о систематическом изложении, о случае, когда краевой угол при увеличении скорости достигает предельного значения 180° и начинает нарушаться полный контакт жидкости с субстратом (смачиваемой подложкой). При еще более высокой скорости движения может наступить совершенное несмачивание, при котором подложка выходит из поливной кюветы совершенно сухой. В отличие от термина полное несмачивание , обозначающего только, что краевой угол превышает 90°, термин совершенное несмачивание обозначает как бы положительный коэффициент растекания воздуха по основе в присутствии жидкости. Конечно, в отличие от растекания жидкости при полном смачивании, в случае совершенного несмачивания речь идет о существенно неравновесном, кинетическом процессе. [c.5]


Смотреть страницы где упоминается термин Краевой угол наступающий: [c.361]    [c.231]    [c.195]    [c.167]   
Адгезия жидкости и смачивания (1974) -- [ c.91 , c.93 , c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Краевой угол



© 2025 chem21.info Реклама на сайте