Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппараты со слоем адсорбента

    Наибольшее практическое применение получили периодические адсорбционные процессы в аппаратах с неподвижным слоем адсорбента. Для обеспечения непрерывности осушки газа предусматриваются три или два адсорбера. В первом случае в одном адсорбере проводят адсорбцию, в другом — десорбцию поглош,енного из газа вещества, в третьем — охлаждение адсорбента. При совмещении в одном аппарате циклов регенерации (десорбции) и охлаждения адсорбента устанавливают два адсорбера. [c.287]


    Адсорберы с неподвижным слоем адсорбента (рис. ХУП-2, а) представляют собой вертикальные аппараты, заполненные гранулированным сорбентом. Исходная смесь пропускается через слой адсорбента. При этом поглощаются соответствующие компоненты смеси. После насыщения адсорбента стадия адсорбции прекращается, и адсорбент должен быть регенерирован. Для регенерации через слой насыщенного адсорбента пропускают водяной пар, инертный газ, растворитель и др. Иногда регенерацию адсорбента проводят, выжигая поглощенные компоненты (например, смолистые вещества) в специальном аппарате. [c.317]

    В промышленности адсорбция осуществляется в аппаратах периодического и непрерывного действия. Интенсификация процессов адсорбции идет по пути использования псевдоожиженного слоя адсорбентов. Так, при очистке сточных вод от фенола в псевдо-ожиженном слое адсорбента 0,8—3 м достигнута производительность 9,2—15 м /(м -ч) при степени извлечения 99,9% и исходной концентрации 1 г/л. [c.487]

    Жидкая или газовая смесь пропускается через слой адсорбента, обычно сверху вниз. Цикл адсорбции заканчивается после почти полного использования поглотительной способности адсорбента, на что указывает проскок адсорбируемого вещества. Затем через адсорбент пропускают вытесняющий агент (растворитель, водяной пар и т. д.), который вытесняет адсорбированное вещество с поверхности адсорбента. Иногда этого бывает недостаточно. Например, при адсорбционной очистке масел, парафина часть смолистых ве(цеств остается па поверхности адсорбента после вытеснения. Тогда адсорбент требует дополнительной регенерации путем выжига смолистых отложений, для чего его необходимо выгружать и регенерировать в отдельном аппарате. [c.258]

    Укажем также еще один нестационарно работающий элемент процесса, характерный для химической промышленности. Обычно нестационарно работает каждый двухфазный элемент процесса, в котором одна фаза течет через аппарат (конвективный поток), а вторая находится в неподвижном состоянии. Схема такого элемента процесса приведена на рис. 10-2. Примером может служить адсорбер с неподвижным слоем адсорбента. В аппарат колонного типа поступает поток, содержащий адсорбтив. Адсорбционное равновесие наступает медленно, причем в объеме аппарата можно различить два отдельных участка. Адсорбция начинается вблизи от входа потока, и здесь достигается равновесие между адсорбентом и потоком. На отдаленном от входа участке аппарата поток освобождается от адсорбтива (инертный газ или жидкость). Эти два участка связаны переходной зоной — так называемым фронтом адсорбции , в котором происходит резкое изменение концентрации адсорбтива она быстро уменьшается от входного значения со до нуля. Фронт адсорбции перемещается в адсорбере с определенной скоростью и доходит за определенный промежуток времени i до точки выхода потока из аппарата. Частное от деления высоты аппарата Ь на продолжительность прохождения i определяет скорость распространения фронта адсорбции  [c.301]


    Десорбция комбинированными способами. Как отмечалось выше, иногда стадию десорбции проводят комбинированными способами. Например, термическая десорбция сопровождается вытеснительной десорбцией (чаще в аппаратах с движущимся плотным слоем адсорбента),-вытеснительную низкотемпературную десорбцию завершают термической десорбцией с целью удаления из адсорбента компонента-вытеснителя (десорбента), вакуумную десорбцию осуществляют совместно с контактным нагреванием слоя адсорбента возможны и другие комбинации [4]. [c.83]

    Для очистки сточных вод используют адсорберы с неподвижным и плотно движущимся слоем поглотителя, аппараты с псевдоожиженным слоем адсорбента, а также аппараты, в которых обеспечивается интенсивное перемешивание обрабатываемой воды с порошкообразным или пылевидным сорбентом. Чаще применяют напорные фильтры с плотным слоем гранулированных активных углей (табл. 12). [c.96]

    Адсорберы для аппаратов средней и большой производительности (рис. 21) имеют специальное нажимное приспособление для обеспечения плотного прилегания решетки с сеткой к слою адсорбента и уменьшения его износа. Такая конструкция адсорбера позволяет заменять адсорбент без демонтажа коммуникаций. Высота слоя адсорбента в этом адсорбере также равна 900 мм. [c.109]

    В процессе поглощения паров воды в аппарате образуется адсорбционный фронт, который перемещается в направлении движения газа. В момент, когда этот фронт достигнет последнего слоя адсорбента, содержание влаги в осушенном газе начинает резко увеличиваться (проскок влаги), что свидетельствует о необходимости переключения подачи сырого газа в адсорбер с регенерированным и охлажденным адсорбентом. [c.287]

    Рассмотрим особенности каждого периода регенерации. За период А из адсорбента извлекаются почти все адсорбированные углеводороды. Влага практически полностью успевает извлечься за период В. Опыт работы многих промышленных установок показывает, что Го, Тр и Гд равны приблизительно 110, 126,7 и 115,6 С независимо от других условий регенерации. Температура — это температура сырого газа на входе в адсорбер. Значительное количество тепла расходуется на нагрев адсорбента, веществ, находящихся в его порах, стальной обечайки адсорбера, решеток для поддержания слоя и инертного материала, на который загружается слой адсорбента. При определении тепловых затрат необходимо массу лобового слоя, предназначенного для защиты силикагеля от капельной влаги, прибавить к массе адсорбента. В ходе регенерации, если даже адсорбер имеет внутреннюю изоляцию, днища аппарата нагреваются практически до температуры регенерации. Поэтому полученная тепловая нагрузка с учетом затрат тепла на нагрев металла адсорбера и изоляции должна быть увеличена на 10—15% с учетом потерь тепла при нагреве металла и изоляции. [c.253]

    Адсорберы с неподвижным слоем адсорбента представляют собой вертикальпые либо горизонтальные пустотелые аппараты, занолнеп-пые слоем зернистого адсорбента. [c.258]

    Общепринятой моделью динамики адсорбции в неподвижном слое является модель фронтальной отработки слоя адсорбента [3]. После насыщения лобового слоя адсорбция вещества из потока в нем прекращается, и поток проходит этот участок без изменения концентрации. Время работы слоя до насыщения лобового участка принято называть периодом формирования фронта адсорбции. После этого начинается второй период, для которого характерна неизменная форма выходной кривой. Концентрационный фронт перемещается с постоянной скоростью вдоль слоя, что указывает на стационарный режим процесса. При этом существует область, называемая работающим слоем или зоной массопередачи, в которой концентрация падает от начальной практически до нулевой. Наличие такой зоны свидетельствует о существовании внутри- и внешнедиффузионного сопротивлений массопереносу. Инженерные методы расчета, допускающие существование стационарного фронта, широко применяются на практике. Для расчета адсорбционного аппарата в этом случае используют уравнение, описывающее время защитного действия слоя в зависимости от его длины, и общий закон массопередачи в слое. [c.69]

    Термическая десорбция осуществляется путем нагревания слоя адсорбента при пропускании через него десорбирующего агента (насыщенный или перегретый водяной пар, горячий воздух, инертный в данных условиях газ) или контактным нагревом слоя адсорбента (через стенку аппарата) с отдувкой небольшим количеством инертного газа, (например, N2), в результате чего происходит выделение поглощенного компонента из адсорбента. [c.81]

    Низкотемпературная адсорбция осуществляется в аппаратах со стационарным слоем адсорбента. Главное достоинство процессов низкотемпературной адсорбции заключается в возможности извлекать компоненты, доля которых в газовом сырье очень мала, т.е. в способности извлекать компоненты, имеющие низкое парциальное давление. Это важно в тех случаях, когда требуется получить продукты высокой степени чистоты. Но процесс адсорбции почти всегда сопровождается выделением тепла. В случае физической адсорбции количество тепла адсорбции составляет 10 - 100 кДж/моль, т.е. соизмерима с [c.149]

    В случае адсорберов с неподвижным слоем адсорбента выбор величин и Ук усложняется вследствие неполноты отработки слоя адсорбента по высоте. В таких аппаратах контакт адсорбента с сырьем происходит послойно в направлении движения потока разделяемой смеси. При этом только часть адсорбента отрабатывается полностью. [c.283]


    Кинетика десорбции в аппаратах с неподвижным слоем адсорбента. Рассмотрим основные закономерности процесса нэ примере десорбции различных веществ из активных углей острым водяным паром. [c.90]

    Поток пара через слой адсорбента является потоком идеального вытеснения. Это положение общепринято на первых этапах исследования и соблюдается для большинства промышленных аппаратов. [c.94]

    Здесь с — концентрация адсорбтива (летучего растворителя) в десорбирующем агенте (водяном паре) —скорость десорбирующего агента, рассчитанная на полное поперечное сечение аппарата 5 Л —высота слоя адсорбента 8 — порозность слоя рп — плотность паровой фазы рт — кажущаяся плотность адсорбента ш — скорость десорбции Сп, Ст — теплоемкость паровой и твердой фаз, соответственно <7 —удельная теплота десорбций t, /н — температура водяного пара и окружающей аппарат среды, соответственно Кт — коэффициент теплопередачи В—диаметр аппарата (десорбера). [c.94]

    Для адсорбционных установок характерно наличие групп однородных элементов, предназначенных для выполнения всеми элементами группы отдельных частей одного процесса. К числу таких групп относятся адсорберы, десорберы, аппараты для проведения сушки и охлаждения слоя адсорбента. Для каждого типа однородных элементов имеется определяющий параметр (концентрация целевого компонента, давление, температура, энтальпия или др.), в диапазоне значений которого можно выбирать места для однородных элементов и их количество. В этом случае место каждого данного /-го элемента находится между значением определяющего параметра 2 ь соответствующим предшествующему (I—1)-му элементу, и значением 7г+ь соответствующим последующему (1- - 1)-му элементу. Иначе говоря, значения определяющего параметра соотносятся согласно двусторонним неравенствам [c.150]

    Следует отметить, что основным методом оценки надежности любого адсорбционного аппарата является использование вероятностно-статистических методов. Количественная оценка при исследовании надежности — основной вопрос проблемы надежности. Количественные критерии надежности, например запасы прочности и устойчивой конструкции, запасы по предельно допустимым значениям температур различных материалов (материала аппарата и слоя адсорбента) при нагреве и охлаждении, скорости абразивного износа адсорбента, характеризуют какую-то одну из сторон надежности. На практике эти запасы часто выбираются интуитивно-эмпирическим методом и носят характер не столько коэффициентов надежности, сколько коэффициентов незнания. Количественные показатели общей надежности аппарата могут быть определены в том случае, если имеется достаточная информация о работе аппарата в реальных условиях или условиях, близких к ним. Такая информация необходима в первую очередь для выявления слабых мест, т. е. систематических источников отказов. Это особенно существенно для адсорбционных аппаратов новой конструкции на этапе опытной эксплуатации, когда требуется постоянная обратная связь, с помощью которой аппарат можно непрерывно улучшать. Для того чтобы информация об отказах и неисправностях аппаратов позволяла точно оценивать его фактическую надежность (и надежность его элементов), служила действенным инструментом в работах по повышению надежности аппаратов, необходимо, чтобы она отвечала следующим требованиям. [c.211]

    Как только адсорбент насыщается поглощаемым компонентом, проводят его регенерацию. Адсорбционная очистка водорода представляет собой циклический процесс поглощения и регенерации. В принципе такой циклический процесс можно проводить в разных аппаратах, организовав перемещение — циркуляцию — адсорбента. Однако транспортирование больших количеств твердого и часто непрочного адсорбента представляет собой сложную инженерную задачу [10, с. 266], особенно при значительном различии давлений в адсорбере и регенераторе. В настоящее время очистку водорода проводят в стационарном слое адсорбента циклическим переключением аппаратов, чередуя периоды адсорбции и регенерации. Поэтому устанавливают обычно три или четыре адсорбера. [c.52]

    Адсорберы с неподвижным слоем адсорбента представляют собой вертикальные аппараты, заполненные гранулированным адсорбентом. В промышленной практике общая высота слоя адсорбента предопределяется необходимым его объемом и величиной гидравлического сопротивления слоя адсорбента обычно она составляет от 2 до 12 м. [c.285]

    Высота слоя адсорбента в адсорбере обычно не превышает 10 м при диаметре аппарата 2—3 м. Высота слоя лимитируется прочностью гранул и сопротивлением слоя адсорбента. Скорость газа в свободном сечении аппарата порядка 0,1—0,2 м/с. [c.319]

    Адсорбер представляет собой вертикальный цилиндрический аппарат диаметром 4 м. Высота слоя адсорбента 4,8 м. Продолжительность адсорбции 8 ч, регенерации 4 ч, охлаждения 4 ч. [c.69]

    Адсорберы с движущимся зернистым адсорбентом, В рассматриваемом случае зернистый слой адсорбента стержнеобразно перемещается через аппарат сверху вниз, проходя последовательно зону охлаждения высотой зону адсорбции высотой к и зону десорбции и нагревания Ад (рис. 15-8). Общая высота рабочей части аппарата составляет [c.394]

    В аппарате поддерживается определенный уровень стационарного кипящего слоя адсорбента. [c.720]

    Адсорберы со стационарным кипящим слоем адсорбента. В таких адсорберах периодического действия, в отличие от адсорберов с неподвижным зернистым слоем адсорбента, вследствие интенсивного перемешивания концентрация поглощаемого вещества во всем слое адсорбента одинакова, является только функцией времени Х=/(т) и не изменяется по высоте аппарата. [c.729]

    Адсорберы с движущимся слоем адсорбента также применяготси для адсорбционного разделения газов и жидкостей. В отличие от адсорберов со стационарным слоем адсорбента здесь процесс адсорбции и десорбции ведется непрерывно, а аппарат состоит из двух частей — адсорбера и десорбера, причем эти аппараты нередко совмещаются в общем корпусе. [c.258]

    Адсорберы с циркулирующим кипящим слоем адсорбента. Пусть при прохождении через аппарат кипящего слоя мелкозернистого адсорбента концентрация поглощаемого вещества в нем за время х увеличивается от Хг на входе в аппарат до 1 на выходе из него, причем в условиях установившегося процесса Х является величиной постоянной. Рабочий объем адсор бера обозначим через м . Тогда уравнение материального баланса по поглощаемому веществу примет вид  [c.730]

    В адсорберах с неподвижным слоем адсорбента все стадии процесса протекают в определенной последовательности в одном аппарате и для непрерывной работы установки приходится иметь несколько аппаратов, работающих по определенному циклу. Непрерывность работы такой установки обеспечивается тем, что производительность стадии адсорбции точно соответствует суммарной продолжительности стадий десорбции, сушки и охлаждения. Если продолжительность стадий десорбции, сушки и охлаждения превышает продолжительность стадии адсорбции, то непрерывность работы установки достигается применением двух и большего числа адсорберов. [c.288]

    Адсорберы с движущимся слоем адсорбента применяются для извлечения этилена из его смеси с водородом и метаном, водорода из смеси газов и т.п. В этом случае процесс ведется непрерывно и каждая его стадия осуществляется в определенном аппарате или части аппарата, причем адсорбент последовательно перемещается между отдельными аппаратами по системе пневмотранспорта. В качестве адсорбента часто применяется гранулированный активированный уголь. [c.289]

    Исходный газ, подлежащий разделению, условно рассматриваемый как состоящий из смеси легкой и тяжелой фракций, направляется под распределительную тарелку, равномерно распределяется по всему сечению аппарата и вступает в контакт с движущимся слоем адсорбента. Через трубки распределительной тарелки газ поступает в верхнюю адсорбционную зону 5, где в противотоке с адсорбентом происходит адсорбция. Из верхней части этой зоны отводится легкая фракция. По мере перемещения газа вверх в адсорбционной зоне происходит массообмен, в результате которого подлежащие извлечению молекулы газа вытесняют с поверхности адсорбента менее активные молекулы легкой фракции, в конечном счете с вер- [c.289]

    Адсорберы с псевдоожиженным слоем адсорбента позволяют также осуществлять непрерывный процесс адсорбции. В этом случае в качестве адсорбента используются мелкие гранулы (обычно не более 500 мкм). Конструктивно адсорбер может иметь один или несколько кипящих слоев (рис. ДП-11), обеспечивающих контакт фаз в противотоке (ступенчато-противоточный адсорбер). В таком адсорбере на специальных контактных устройствах (тарелках) осуществляется взаимодействие между газом и порошкообразным адсорбентом, в результате чего адсорбент переводится в состояние псевдоожижения. Адсорбент, двигаясь сверху вниз через переточные устройства, передается с одной контактной ступени на другую. Газ движется в аппарате противотоком снизу вверх. отделения из га- [c.292]

    На рис. 4.29 приведены результаты вычислений для пяти псевдоожпжен-кых слоев. Анализ полученных результатов показывает, что в многосекционном иротивоточном аппарате слои адсорбента поглощают различное коли-честпо адсорбтива и может иметь место максимум поглощения. Чнсло необ-> одимых слоев нри больших п можно оценить экстраполяцией расчетных кривых до заданных значений Ск и Со. В рассматриваемом примере экстраполяция дает и яв 8 (пунктирные линии на рис. 4.29). [c.244]

    По исходным данным определяем внутренний диаметр адсорбера. С помощью рис. 44 определяем толщину стенки аппарата. В зависимости от размеров имеющихся обечаек для изготовления аппаратов принимаем впешпий диаметр адсорбера. Вычитая из внешнего диаметра удвоенную толщину стенки аппарата, получаем внутренний диаметр адсорбера. Если адсорбер имеет внутреннюю изоляцию (около 15 см), то, вычитая ее из внутреннего диаметра, получаем диаметр слоя адсорбента. [c.249]

    Четкость выделения зон адсорбции зависит от природы разделяемой смеси и адсорбента, а также от условий проведения процесса температуры, давления, скорости подачи разделяемого потока. При хорошей дифференциации зон адсорбции появление компонентов в выходном потоке строго последовательно при этом говорят о хроматографическом разделении исходной смеси. В промышленных условиях хроматографического разделения, как правило, не происходит, такая цель и не ставится обычно решается задача извлечения из исходной смеси одного или нескольких целевых компонентов. В последнем случае процесс ориентируется на извлечение ключевого компонента — наименее сорбируемого из целевых. Появление ключевого компонента в выходном потоке является сигналом о необходимости прекращения процесса адсорбции. В силу обратимости процесса адсорбции адсорбированные компоненты можно удалить из слоя адсорбента, т. е. десорбировать. На процесс десорбции особое влияние оказывает повышение температуры слоя адсорбента и создаиие потока газовой (паровой) фазы — десорбирующего (регенерационного) потока. В результате осуществления процесса десорбции получают целевые компоненты в виде продукта и регенерированный (освобожденный от адсорбированного вещества) адсорбент. Слой адсорбента, таким образом, последовательно переходит из цикла адсорбции в цикл регенерации. Цикл регенерации, в свою очередь, подразделяется на стадию нагрева (собственно десорбция) и стадию охлаждения (снижение температуры слоя адсорбента до температуры адсорбции). В соответствии с этими стадиями адсорбционного процесса путем последовательного переключения перерабатываемого потока с одного адсорбционного аппарата на другой организуется непрерывный производственный процесс. [c.93]

    Теплота регенерацни расходуется на нагрев аппарата и слоя адсорбента до температуры десорбтити, испарение поглощенш Ех компонентов и потери в окружающую среду, составляющие обычно 3—5%. Скорость нагрева адсорбента на установках [c.150]

    Регенератор выполнен в виде горизонтального каскадно-секционированного аппарата, в котором осуществляется окислительный обжиг закоксованного адсорбента подачей воздуха через воздухораспределительную решетку. В зависимости от степени закоксованности адсорбента реакционная зона аппарата состоит из двух или большего числа секций с кипящим слоем. Секции подразделяются посредством вертикальных переточных перегородок, устанавливаемых над воздухораспределительной решеткой. Их высота выбирается в зависимости от требуемой высоты кипящего слоя. Для снятия избыточного тепла выжига кокса и регулирования оптимального температурного режима, реакционная зона оснащена батарейными водяными теплообменниками, омываемыми плотным движущимся слоем адсорбента. Снимаемый теплообменниками избыток тепла используется для получения водяного пара. Дымовые газы регенерации, очищенные в мультициклоне и устройствах тонкой очистки от пьшевидных частиц адсорбента, поступают на рекуперацию тепла и далее на улавливание диоксида серы и только затем выбрасываются в атмосферу. [c.23]

    Установки перколяционной очистки с неподвижным слоем адсорбента включают несколько перколяторов — вертикальных цилиндрических пустотелых аппаратов, куда загружают адсорбент. На отечественных перколяционных установках в качестве адсорбента применяют крошку алюмосиликатного катализатора. По мере насыщения адсорбента в работу включают следующий пер-колятор отработанный адсорбент из первого перколятора направляют на регенерацию. Однако установка имеет следующие недостатки при использовании парафина-сырца, не прошедшего предварительной очистки и имеющего сильную окраску, адсорбент быстро насыщается выход очищенного парафина на адсорбент не превышает 900—1200 вес.%- Стабильность цвета парафина, прошедшего только перколяционную очистку, часто является неудовлетворительной — при уменьшении глубины очистки она быстро ухудшается. Кроме того, на большинстве заводов адсорбент не регенерируют, что удорожает очистку. [c.202]

    Примером адсорберов этого типа может служить аппарат, изображенный на рис. 15-11. Он представляет собой цилиндрическую вертикальную емкость 1. В нижней части аппарата имеется газораспределительная решетка 5, на которой размещается адсорбент 2. Газовая смесь вводится через трубу, проходит через слой адсорбента и уходит из аппарата через патрубок. Вытесняющее вещество вводится в аппарат через перфорированнув) трубу 4 и отводится также через патрубок. Люки 5 и 6 слуигат для загрузки и выгрузки адсорбента. [c.397]

    Газовая (паровоздушная) смесь подается в корпус I адсорбера (рис. 20-2), проходит сквозь находящийся на решетке 2 слой адсорбента (на рисунке заштрихован), после чего удаляется через выхлопной штуцер. По завершении адсорбции для вытеснения поглощенного вещества из адсорбента в аппарат подается перегретый водяной пар (или другой вытесняющий агент), который движется в направлении, обратном движению газа. Паровая смесь (смесь паров воды и изв лекаемого компонента) удаляется из аппарата и поступает на разделение в отстойник непрерывного действия или в ректификационную колонну. После десорбции сквозь слой адсорбента пропускают для его сушки горячий воздух, который входит через паровой штуцер и удаляется через тот же штуцер, что и паровая смесь. Высушенный адсорбент охлаждается холодным воздухом, движущимся по тому же пути, что и водяной пар, после чего цикл поглощения повторяется снова. [c.718]

    Схема адсорбера с движущимся сплошным слоем адсорбента для разделения смеси газов представлена на рис. VIII-IO. Аппарат комбинированный, состоит из отдельных зон, в которых осуществляются адсорбция, десорбция, нагрев и охлаждение адсорбента. Через аппарат непрерывно перемещается сплошным слоем под действием силы тяжести сверху вниз поступающий из бункера 7 гранулированный адсорбент. Он последовательно проходит через соответствующие зоны аппарата, в которых протекает тот или иной процесс. [c.289]


Смотреть страницы где упоминается термин Аппараты со слоем адсорбента: [c.41]    [c.147]    [c.122]    [c.117]    [c.734]    [c.293]   
Химический энциклопедический словарь (1983) -- [ c.12 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные процессы, проводимые в аппаратах периодического действия с неподвижным слоем адсорбента

Аппарат для исследования кинетики десорбции во взвешенном слое адсорбента

Аппарат с движущимся плотным слоем адсорбента

Аппарат с движущимся слоем адсорбент

Аппарат с неподвижным слоем адсорбента

Аппарат со взвешенным слоем адсорбент

Аппараты слоем

Гидравлические закономерности работы аппаратов с движущимися и кипящими слоями адсорбента Гидравлика продуваемых движущихся слоев

Изучение процесса адсорбции в противоточном колонном аппарате со взвешенным слоем адсорбента

Кинетика адсорбции в аппарате с неподвижным слоем адсорбента

Массообмен при адсорбции в многокамерном аппарате непрерывного действия с кипящим слоем адсорбента

Массообмен при адсорбции в однокамерном аппарате непрерывного действия с кипящим слоем адсорбента

Определение коэффициента массопередачи в противоточном колонном аппарате со взвешенным слоем адсорбента

Переходный режим работы аппаратов с неподвижным слоем адсорбента

Расчет аппаратов с кипящими слоями адсорбента

Расчет в противоточном аппарате с движущимся слоем адсорбент



© 2025 chem21.info Реклама на сайте