Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт в бионеорганической химии

    Бионеорганическая химия изучает в первую очередь поведение десяти металлов жизни в живом организме. К металлам жизни (табл. 18.1) относятся пять ионов с замкнутыми электронными оболочками (ионы нз- рия, калия, магния, кальция и цинка), четыре иона с недостроенной З -электронной оболочкой (ионы марганца, железа, кобальта и меди) и только один элемент молибден, у которого могут появиться электроны на 4 -оболочке. [c.560]


    Биохим ия — это не только развитие органической химии. Химические процессы, протекающие в живой природе, включают естественными и независимыми способами многие химические элементы, в том числе металлы. Уже давно известна большая роль натрия, кальция и железа в таких реакциях. Но для жизни необходимы и многие другие металлы, в частности медь, цинк, марганец, молибден и кобальт. В этой главе, мы рассмотрим основные аспекты химии металлов в биологических системах, которую иногда называют бионеорганической химией. [c.637]

    БИОНЕОРГАНИЧЕСКАЯ ХИМИЯ КОБАЛЬТА [c.648]

    Накопление и транспорт железа Бионеорганическая химия кобальта [c.677]

    Из 102 элементов периодической системы в живых организмах обнаружено не менее 60. Многие из них относятся к металлам и встречаются в живых клетках в виде разнообразных комплексных соединений. Уже давно стало ясно, что металлы, даже встречающиеся в живых тканях в крайне низких концентрациях (так называемые микроэлементы), и их комплексы — это не случайные примеси, а биологически важные компоненты клетки. Множество патологических нарушений, связанных с недостаточностью в клетке железа, меди, цинка, марганца, молибдена, кобальта, не говоря уже о более распространенных в живых тканях металлах кальции, магнии и др., имеют большое значение для биохимии животных и растений, а также для прикладных областей. Исследования биохимических процессов, в которых участвуют ионы металлов, представляют сравнительно новую, но уже вполне определившуюся и быстро развивающуюся область науки, называемую бионеорганической химией. К ней относится также и моделирование структурных и функциональных параметров природных комплексов металлов. Несмотря на значительные различия выполняемых физиологических функций, типов катализируемых реакций и структур реакционных центров, ферменты, являющиеся предметом исследования в бионеорганической химии, объединяет одна особенность— участие ионов металлов или в самом каталитическом акте, или в поддержании третичной или четвертичной структуры белка, необходимой для оптимального функционирования фермента. Это определяет известную общность подходов к изучению ферментов указанной группы и выбор некоторых методов исследования, заимствованных, с одной стороны, из арсенала энзимологии, а с другой - из химии координационных соединений. [c.5]


    В последние 10 лет во всем мире широко развивается новая область — бионеорганическая химия. По своему существу — это биокоординациоипля химия, начало которой в нашей стране и, не будет преувеличением сказать,— во всем мире было положено трудами А. А. Гринэерга. Уже в 30-х годах А. А. Гринберг начал систематические работы по биоактивным координационным соединениям кобальта. Эти работы успешно проводятся и теперь, их результатом являются новые лекарственные препараты, освоенные медицинской практикой. Развитие координационной химии по этому пути — исследование биоактивности координационных соединений, обещает быть весьма плодотворным. [c.6]

    Камнем преткновения для теории валентности явилась многочисленная группа веществ, в которых элементы проявляют переменную валентность. Особенно многочисленными представителями этой группы являются комплексные соединения. Комплексные соединения — это, как правило, ярко окрашенные солеобразные вещества, известные химикам еще с ХУ1И в. Одними из первых были открыты разноцветные комплексные соли железа и кобальта. Весьма существенно, что многие биокатализаторы — ферменты также являются комплексными соединениями. Изучением таких соединений занимается бионеорганическая химия. [c.191]

    В настоящее время наблюдается мощный интеллектуальный подъем в неорганической химии, который сильнее всего затронул те ее области, которые лежат на стыке с соседними дисциплинами химию металлоорганических и бионеорганических соединений, химию твердого тела, биогеохимию и др. Возрастает, в частности, уверенность ученых в том, что неорганические элементы играют важную роль в живых системах. Живые существа вовсе не являются чисто органическими. Они весьма чувствительны к ионам металлов почти всей Периодической системы Д.И. Менделеева. Некоторые ионы играют важнейшую роль в таких жизненно важных процессах, как связывание и транспорт кислорода (железо в гемоглобине), поглощение и конверсия солнечной энергии (магний в хлорофилле, марганец в фотосистеме II, железо в ферродоксине, медь во фта-лоцианине), передача электрических импульсов между клетками (кальций, калий в нервных клетках), мышечное сокращение (кальций), ферментативный катализ (кобальт в витамине В12). Это привело к взрыву творческой активности ученых в области неорганической химии биосистем. Мы начинаем изучать строение ближайшего и дальнего окружения атомов металлов в биосистемах и учимся понимать, как это окружение позволяет атому металла с такой высокой чувствительностью реагировать на изменение pH, давление кислорода, присутствие доноров или акцепторов электронов. [c.158]


Основы неорганической химии (1979) -- [ c.648 , c.650 ]




ПОИСК





Смотрите так же термины и статьи:

Бионеорганическая химия



© 2025 chem21.info Реклама на сайте