Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кривые распределения по скоростям фотоэлектронов

    Вид вольтамперной характеристики фотоэффекта, то-есть ход кривой, воспроизводящей зависимость фототока с катода от разницы потенциалов между катодом и улавливающим электроны анодом, определяется в случае чистых металлических поверхностей, кроме геометрической конфигурации электродов, распределением скоростей среди эмиттированных фотоэлектронов и контактной разницей потенциалов между электродами. Вследствие малой плотности фототока ограничивающее ток действие пространственных зарядов весьма незначительно и ток достигает насыщения уже при очень малой величине истинной разницы потенциалов между катодом и анодом (сумма наложенной извне и контактной разницы потенциалов). В случае сложных катодов внешнее поле влияет на эмиссию, и вольтамперная характеристика сложнее. Насыщение тока наступает и для чистых металлов лишь при сравнительно большой разности потенциалов между катодом и анодом в тех случаях, когда вследствие формы катода и анода напряжённость поля у поверхности катода настолько различна в различных точках, что при малой разнице потенциалов между анодом и катодом пространственные заряды не рассеиваются в местах наименьшей напряжённости поля у катода и ограничивают здесь плотность тока. [c.132]


    Различно обозначенные на рисунке 61 точки относятся к различным V. Для различных металлов сложные кривые распределения похожи друг на друга. Та энергия, которой обладает наибольшее число электронов, равна примерно 0,4 максимальной энергии (определяемой по закону Эйнштейна). Та скорость, которой обладает наибольшее число фотоэлектронов, равна примерно 0,6 максимальной скорости. О распределении скоростей среди фотоэлектронов смотрите также [415]. [c.136]

Рис. 61. Сложная кривая распределения фотоэлектронов по скоростям. Рис. 61. <a href="/info/1007348">Сложная кривая распределения</a> фотоэлектронов по скоростям.
    Все рассмотренные методы характеризуются точностью 0,1 эв для ионов, у которых кривые эффективности ионизации аналогичны по форме кривым для инертных газов. При использовании специальной аппаратуры для получения моноэнергетического пучка электронов интерпретация ионизационных кривых значительно упрощается и становится возможным обнаружить их тонкую структуру, которая смазывалась при использовании электронов, неоднородных по энергии. Если допустить, как это сделал Никольсон [1485], что все ошибки обусловлены различием форм кривых эффективности ионизации, а это различие является следствием неодинакового участия высших энергетических уровней ионов в образовании ионизационных кривых, то точность определения будет возрастать при использовании любого метода, обеспечивающего возможность исследования тонкой структуры кривой. В ранней работе Ноттингема [1524], использовавшего энергетически однородный электронный пучок, была выявлена тонкая структура кривой эффективности ионизации ртути вблизи ионизационного потенциала. Было также показано, что если для ионизации использовать не термические электроны, а фотоэлектроны, тонкая структура проявляется более отчетливо [1631,1969] несмотря на то, что аппаратура не предусматривала возможность анализа по массам. Недавно Кларк [346] использовал для получения моноэнергетического пучка электронов 127-градусный электростатический селектор по скоростям он показал, как с изменением распределения электронов по энергиям изменяется кривая, которая в большинстве случаев становится прямолинейной с небольшим изгибом по мере приближения к потенциалу появления. В наиболее благоприятных случаях возможно получить результаты с точностью 0,02 эв, не зависящие от чувствительности регистрации в диапазоне от 10 до 1. [c.480]



Электрические явления в газах и вакууме (1950) -- [ c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Кривые распределения

Распределение по скоростям

Фотоэлектроны



© 2025 chem21.info Реклама на сайте