Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмиссия электронная вторичная термическая

    Таким образом, механизм дуги можно представить себе следующим. Из катода в результате высокой степени его разогрева (термоэлектронная эмиссия) или наличия около его поверхности больших напряженностей электрического поля (10 —10 в см — автоэлектронная эмиссия) вырывается поток электронов. Первый случай имеет место для материалов катода с высокой температурой плавления и испарения металла (уголь, графит, вольфрам, молибден), благодаря чему температура на их поверхности может достигать в катодных пятнах значений 2 500—3 000° С и выше, когда начинается заметная термоэлектронная эмиссия. Второй случай соответствует материалам с низкой температурой кипения и испарения (ртуть, титан, медь). В области катодного падения поток электронов разгоняется настолько, что за ее пределами происходит интенсивная ионизация частиц газа в дуговом промежутке, причем здесь, по-видимому, весьма существенна роль ступенчатой ионизации. Образовавшиеся положительные ионы под действием поля направляются к катоду и разогревают его вторичные и первичные электроны направляются через столб дуги в направлении анода. На их пути происходят новые соударения (главным образом термическая ионизация) и образование новых заряженных частиц, что компенсирует их исчезновение в более холодных частях столба путем рекомбинации и диффузии. При попадании на анод отрицательные частицы нейтрализуются, выбивая из него некоторое количество положительных ионов, устремляющихся через столб дуги к катоду. Плазма столба в целом нейтральна, т. е. концентрация положительных и отрицательных частиц одинакова, но из-за того, что подвижность электронов по [c.29]


    Кроме того, бомбардируя поверхность ванны, электроны пучка вызывают появление вторичных электронов, а также рентгеновских лучей. Наконец, поверхность расплавленной и перегретой ванны представляет собой мощный источник термической эмиссии электронов. Все эти статьи расхода энергии покрываются в конечном счете за счет энергии попадающих на ванну электронов пучка. [c.255]

    Это явление характеризуется коэффициентом вторичной эмиссии з, который представляет отношение электронов эмиссии к электронам падающим и поглощенным. Однако вторичная эмиссия является только одним из многих процессов, имеющих место при облучении электронами. Другими следствиями бомбардировки могут быть флуоресценция, изменения в эффективности флуоресценции, электропроводности, химических связях, действии ферментов, термическом расширении и поглощении видимого света, инфракрасного и ультрафиолетового излучения, а также ионизации и образование распределения зарядов в самом кристалле. Облучающие электроны могут отражаться, рассеиваться и терять энергию ( разброс ). Ни один из этих эффектов в данной главе не рассматривается, но в разделе П,2 можно найти сведения об определении сродства к электрону методами торможения электронного луча. [c.692]

    Анализ термически нестабильных, труднолетучих соединений с использованием традиционных методов ионизации (электронный удар, химическая ионизация, ионизация в сильном электрическом поле) неизбежно связан с возможностью разложения образца в процессе его введения в ионный источник. В отдельных случаях разложения можно избежать, переводя анализируемые объекты в более летучие и термически более стабильные производные (дериватизация). Ограничения этого приема очевидны поиски иных способов ионизации привели к созданию методов, основанных на эмиссии ионов из вещества в конденсированном состоянии. Масс-спектры вторичных ионов, получаемые под действием ионных, электронных и атомных пучков, а также лазерного излучения содержат интенсивные пики молекулярных и осколочных ионов. Их совокупность позволяет определять молекулярную массу и структуру исследуемого образца. [c.176]

    При очень низких кинетических энергиях (меньше 5 эВ) взаимодействие по существу ограничивается самым верхним поверхностным слоем материала мишени. Когда атом инертного газа с такой низкой кинетической энергией падает на атомарно-чистую поверхность металла, то он может либо отразиться от поверхности, либо прийти с ней в термическое равновесие и затем десорбироваться. В этой области энергий состояние описывается с помощью коэффициентов аккомодации, прилипания и передачи импульса. Важную роль- играет потенциальная энергия бомбардирующих частиц (возбужденных атомов или ионов), поскольку она определяет элект-ронны е переходы, которые могут привести к эмиссии вторичных электронов или, в случае сложных материалов или наличия примесей, адсорбированных на поверхности,— к разрыву или восстановлению химических связей. Это вызывает десорбцию, химические реакции, полимеризацию и т. д. К аналогичным эффектам приводят электронное облучение или освещение. [c.353]


    П. газового разряд а. При электрич. разряде в газе низкой плотности ионизация производится электронным ударом. При достаточно высоком приложенном напряжении становится возможным размножение электронов по типу цеппой реакции возникает электронная лавина и происходит электрич. пробой газа. Различают электродный и безэлект-родный разряд. В первом большое значение имеют явления на электродах термическая, полевая (автоэлектронная) и вторичная эмиссия электронов. В безэлектродпом высокочастотном разряде концентрация электронов определяется размножением их в электронной лавине и рекомбинацией при тройных столкновениях в объеме и после диффузии на стенки, аналогично концентрации активных центров цепной реакции. [c.21]

    Разрушение эластомеров под влиянием растворенных газов и, в частности, выделяющихся продуктов химических реакций осложнено рядом вторичных процессов. Так, тепловой взрыв эпастомеров [25] при термическом воздействии происходит с образованием пористой поверхности размером от 5 м /г дпя попибутадиена до 15 м /г для полихлоропрена и 100м /г дпя полидихпорбутадиена. Образование новой развитой поверхности сопровождается эмиссией электронов и значительной электризацией образцов (рис. 3.40) [156], что. в свою очередь может вызвать различные химические превращения, инициированные излучением. [c.141]

    Тон юий слой металла, который обычно используется для соз-дамия электрической и термической проводимости у изоляторов, является также источником общей массы вторичных электронов. Слой металла, например золота толщиной 10 нм, конечно, повышал бы коэффициент вторичной электронной эмиссии б для органического о р>азца., исследуемого при низком ускоряющем напряжении, НО мог бы сильно снижать б для керамики, содержащей значительное количество оюислов щелочноземельных элементов. [c.181]


Физика и химия твердого состояния органических соединений (1967) -- [ c.678 , c.680 ]




ПОИСК





Смотрите так же термины и статьи:

Вторичные электроны

Электронная эмиссия

Эмиссия

Эмиссия Эмиссия



© 2025 chem21.info Реклама на сайте