Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натриевый насос также Ионный

    Натриевым насосом служит а+К -АТФаза. В настоящее время окончательно установлено, что за передвижением Ыа+ ответственна АТФаза, стимулируемая ионами Ма+ и К и что этот фермент векториальный, т. е. он обладает пространственно направленным действием. Наиболее убедительные данные, полученные при изучении 1 а+К -АТФаз в эритроцитах млекопитающих, можно резюмировать следующим образом. Если эритроциты поместить при контролируемых условиях в дистиллированную воду, то они набухают и их мембраны становятся легко проницаемыми. В результате клетки теряют свой гемоглобин и другие белки цитоплазмы, а также внутренние электролиты. Такие тени эритроцитов можно теперь нагружать разнообразными веществами, так как после добавления к ним изотонической среды они снова сжимаются до своих нормальных размеров и их мембраны опять становятся, как обычно, относительно непроницаемыми. Таким способом можно получить тени эритроцитов, содержащие АТФ и ноны Ка+ и К в различных [c.143]


    Все эти примеры служат иллюстрацией пассивного, но стереоселективного переноса, когда органические модельные системы осуществляют асимметричное узнавание. Однако можно провести аналогию между этими результатами и процессом опосредованного переноса через биологические мембраны. Все липидные мембраны практически непроницаемы для внутриклеточных белков и высокозаряженных органических и неорганических ионов, находящихся с обеих сторон мембраны. Диффузия Na+ через клеточную мембрану из клетки и К+ в клетку происходит в направлении отрицательного градиента химического потенциала и называется пассивным переносом. Пассивный перенос ионов через мембраны может быть вызван ионофорами [см. разд. 5.1.3]. К счастью, концентрации катионов по обе стороны мембраны различные, и такое состояние поддерживается активным переносом, который зависит от метаболической энергии. Механизм этого процесса известен под названием натриевый насос, функция которого сводится к поддержанию высокой внутриклеточной концентрации К+ и низкой концентрации Na+. Кальций, по-внднмому, также активно выводится из клеток. В этих случаях энергия для переноса обеспечивается за счет гидролиза АТР. Однако диффузия сахаров и аминокислот к важнейшим клеточным объектам — пример простого опосредованного пассивного переноса. [c.282]

    Метаболический насос, осуществляющий обмен одного иона Ыа+ на один ион К- - (именно такой насос изображен на рис. 6.10), поддерживает концентрационные градиенты ионов по обе стороны мембраны, но не вносит вклада в создание мембранного потенциала. Однако если обмен ионов не осуществляется в пропорции 1 1, то такой насос участвует в формировании потенциала покоя. Подобные ионные насосы называются электрогенными. В эксперименте, представленном на рис. 6.9, исследовался именно электрогенный насос, поскольку Ыа/К-обмен происходит в пропорции 3 2. В этом опыте насос активировался лишь после возбуждения. Однако в настоящее время выявлено множество клеток, мембранный потенциал которых даже в состоянии покоя в некоторой степени создается электрогенными насосами. Большинство подобных работ было проведено на крупных клетках беспозвоночных, в частности моллюсков. В настоящее время выявлены и изучены не только натриевые и калиевые, но также кальциевые и хлоридные насосы. Роль Са + в жизнедеятельности клетки чрезвычайно велика (мы рассмотрим функции этого иона в дальнейшем). [c.145]

    Натриевый насос участвует и в создании градиента концентрации ионов, необходимого для передачи нервного импульса, а также в переносе через мембрану ряда веществ путем вторично-активного транспорта (см. ниже). [c.210]

    Передача электрических сигналов нервной клеткой основана на изменении мембранного потенциала в результате прохождения небольших количеств ионов через управляемые ионные каналы. Эти ионы перемещаются за счет энергии, большой запас которой создается благодаря работе натриево-калиевого насоса, поддерживающего высокие градиенты концентрации На и 1С на мембране нервной клетки. В состоянии покоя мембрана нейрона благодаря каналам утечки более проницаема дм калия, чем для других ионов, и поэтому мембранный потенциал близок к равновесному калиевому потенциалу, составляющему примерно - 70 мВ. Потенциал действия возникает тогда, когда под влиянием короткого деполяризующего стимула открываются потенциал-зависимые натриевые каналы, так что мембрана становится более проницаемой для На а мембранный потенциал еще дальше смещается в сторону равновесного натриевого потенциала Благодаря такой положительной обратной связи открывается еще больше натриевых каналов, что в конечном итоге приводит к возникновению потенциала действия, подчиняющегося закону всё или ничего . На каждом данном участке мембраны потенциал действия быстро исчезает вследствие инактивации натриевых каналов, а во многих нейронах также вследствие открытия потенциал-зависимых калиевых каналов. [c.304]


    Также действует натриево-калиевый насос в клетках снаружи клетки высокая концентрация натрия, он свободно попадает в клетку через микропоры и увеличивает здесь свою концентрацию Тут же начинает действовать осмос и оп раздувает клетку, увеличивает микроноры и сквозь них теперь уже свободно попадают также и ионы калия, имеющие снаружи меньшую концентрацию. Т.е. сочетание осмоса и МДК-эффекта регулирует обмен веществ в клетках. Это кажется интереснейшая идея  [c.391]

    Передача электрических сигналов нервной клеткой основана на изменении мембранного потенциала в результате прохождения относительно небольшого числа ионов через мембранные каналы. Эти ионы перемещаются за счет энергии, большой запас которой создаежя благодаря работе Ыа К -АТРазного насоса, поддерживающего более низкую концентрацию N0 и более высокую концентрацию К внутри клетки по сравнению с наружной средой. В покоящемся нейроне каналы избирательной утечки К делают мембрану более проницаемой для калия, чем для других ионов, и поэтому мембранный потенциал покоя близок к равновесному потенциалу К, составляющему примерно - 70 мВ. Внезапная деполяризация мембраны изменяет ее проницаемость, так как при этом открываются потенциал-зависимые натриевые каналы. Но, если деполяризованное состояние поддерживается, эти каналы вскоре инактивируются. Под влиянием мембранного электрического поля отдельные каналы совершают резкий переход от одной из возможных конформаций к другой. Потенциал действия инициируется тогда, когда под влиянием короткого деполяризующего стимула открывается часть потенциал-зависимых натриевых каналов, что делает мембрану более проницаемой для Ыа и еще дальше смещает мембранный потенциал по направлению к равновесному натриевому потенциалу. В результате такой положительной обратной связи открывается еще больше натриевых каналов, и так продолжается до тех пор, пока не возникнет потенциал действия, подчиняющийся закону всё или ничего . Потенциал действия быстро исчезает вследствие инактивации натриевых каналов, а во многих нейронах также и открытия потенциал-зависимых калиевых каналов. Распространение потенциала действия (импульса) по нервному волокну зависит от кабельных свойств этого волокна. Когда при импульсе мембрана на некотором участке деполяризуется, ток, проходящий здесь через натриевые каналы, деполяризует соседние участки мембраны, где в свою очередь возникают потенциалы действия. Во многих аксонах позвоночных высокая скорость и эффективность проведения импульсов достигается благодаря изоляции поверхности аксона миелиновой оболочкой, оставляющей открытыми лишь небольшие участки возбудимой мембраны. [c.92]

    Наряду с транспортными системами, использующими протонный потенциал, существуют также системы, зависимые от АТР. Определенную роль здесь играют периплазматические связуюпще белки (рис. 2.28). Плазматическая мембрана животных клеток не транспортирует протоны и не создает протонного градиента. Мембранный потенциал, вероятно, поддерживается только АТР-зависимыми насосными механизмами, например натрий-калиевым насосом, а натриевый потенциал в свою очередь доставляет энергию для симпорта питательных веществ вместе с ионами На .  [c.260]


Смотреть страницы где упоминается термин Натриевый насос также Ионный: [c.637]    [c.241]    [c.16]   
Биохимия Том 3 (1980) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте