Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрационный градиент

    Самопроизвольное разделение гомогенного раствора на две фазы в этом процессе представляется, на первый взгляд, неожиданным, поскольку в нем возникают концентрационные градиенты, а также фазовые границы, обладающие избыточной энергией. Статистическая трактовка, предложенная Онзагером [13, с. 456], вскрывает энтропийный характер коацервации. Вытянутые макромолекулы в растворе перекрываются сферами действия, в результате чего уменьшается свобода броуновского движения. Выделение части макромолекул в другую, более концентрированную фазу, значительно увеличивает свободу вращательного движения всех макромолекул, оставшихся в дисперсионной среде (мало изменяя ее для макромолекул коацервата), а следовательно и энтропию системы. [c.316]


    Обработка результатов. I. Рассчитывают значения мутности растворов т по формулам (124) и (125). Из величины т для каждого раствора вычитают мутность растворителя То. 2. Строят график зависимости показателя преломления растворов п от концентрации. Получают прямую линию. Определяют концентрационный градиент показателя преломления (1п/с1С как тангенс угла наклона этой прямой. 3. Используя полученное значение (1п/ 1С, рассчитывают постоянную Н по формуле (117). В качестве X берут значение эффективной длины волны света, пропускаемого светофильтром, который использовался при измерениях светорассеяния. 4. Рассчитывают значения функции НС/т—То для каждой концентрации. Результаты сводят в таблицу по следующей форме  [c.163]

    По мере утолщения образующихся при высокотемпературном окислении металлов пленок перемещение реагентов через них в преобладающем больщинстве случаев осуществляется диффузией (из-за наличия концентрационного градиента, созданного разностью химических потенциалов), которая часто и контролирует процесс окисления металлов, являющийся, таким образом, процессом реакционной диффузии (диффузии, при которой возникают или разлагаются химические соединения). Если исходить из преимущественной диффузии через окисную пленку кислорода (зона роста пленки при этом находится у поверхности раздела пленка—металл), то для скорости установившегося стационарного режима процесса можно написать уравнение [c.56]

    Рост толщины слоев происходит благодаря диффузии металла или окислителя или их обоих, движущей силой которой является концентрационный градиент, созданный разностью химических потенциалов. [c.69]

    Вагнера Диффузия под действием концентрационного градиента — — Окалина — — — [c.82]

    Гомогенизация жидкостей. Число оборотов мешалки Пд а случае перемешивания в однофазной системе с целью снижения температурных и концентрационных градиентов может быть опреде/Тено из зависимости [c.253]

Рис. 9 0. Концентрационные градиенты в окиси цинКа и закиси меди при давлении кислорода / — 0,1 атм 2 — 0,001 атм А — граница окисел—металл — граница окисел—газ Рис. 9 0. <a href="/info/73202">Концентрационные градиенты</a> в окиси цинКа и закиси меди при <a href="/info/71497">давлении кислорода</a> / — 0,1 атм 2 — 0,001 атм А — граница <a href="/info/58338">окисел—металл</a> — граница окисел—газ

    На рис. 90 приведены концентрационные градиенты (по Вагнеру) в окислах с избытком и недостатком металла при разных давлениях кислорода в предположении линейности распределения дефектов. [c.130]

    Почти все существующие модели регенерации закоксованного слоя катализатора относятся к неподвижному слою [146, 147, 149, 150, 160-162]. В принципе полная математическая модель нестационарного процесса в слое катализатора учитывает продольный и радиальный перенос тепла и вещества в слое катализатора, а также наличие температурных и концентрационных градиентов внутри пористого зерна, т. е. включает в себя модель (4.15)-(4.16) [159]. Математическое описание такой модели представляется очень сложной системой дифференциальных уравнений в частных производных. Поэтому, чтобы математически моделировать такой сложный процесс, как регенерация катализатора, обычно прибегают к ряду упрощающих допущений. [c.83]

    Возможность торможения в газовой пленке может быть грубо оценена также вычислением величины концентрационного градиента между свободным объемом реагента в реакционной среде и реагента на поверхности гранулы катализатора. Если он составляет величину, которая больше нескольких процентов от концентрации реагента в основной массе среды, то, вероятно, имеет место торможение в газовой пленке. Концентрационный градиент зависит от природы реагирующих веществ и степени турбулентности. Влияние турбулентности изменяется для различных систем, но для оценки его значения имеются достаточно точные экспериментальные данные. Эта оценка была предложена Уилером [8], который показал, что для реакции, которая полностью лимитируется диффузией, константа скорости составляет  [c.51]

    В уравнении (116) По и п—показатели преломления растворителя и раствора соответственно (1п/(1С — концентрационный градиент показателя преломления X—длина [c.157]

    Флуктуации тем больше, чем меньше осмотическое давление, препятствующее им, поэтому т обратно пропорционально концентрационному градиенту осмотического давления. [c.158]

    Обратная зависимость х от концентрационного градиента осмотического давления отвечает положению Эйнштейна, что флуктуации плотности в растворе тем больше, чем меньше осмотическое давление. [c.458]

    В результате процесса термодиффузии концентрация примеси в одном из сосудов будет возрастать, что приводит к возникновению концентрационного градиента вдоль соединительной трубки. Последний вызывает обычную концентрационную диффузию, которая стремится выровнять состав смеси во всем объеме системы, вследствие чего примесь переносится по соединительной трубке в обратном направлении. Скорость этой концентрационной диффузии будет тем выше, чем больше разница в концентрациях примеси в сосудах / и. 2, и в соответствии с законом Фика может быть выражена соотношением [c.161]

    При использовании неполяризующегося вспомогательного электрода и электролизера с малым омическим сопротивлением ом при потенциостатическом методе можно обеспечить постоянство потенциала исследуемого электрода. Все методы измерения перенапряжений, основанные на том или ином возмущении системы, можно еще подразделить на стационарные и переходные. В стационарных методах соблюдается не только стационарность переноса заряда, но и постоянство структуры поверхности электрода и примыкающих к нему областей в течение опыта. Должны оставаться постоянными концентрационные градиенты в электроде и в электролите. На твердых электродах в течение опыта должна быть постоянной и микроструктура поверхности. Последнее условие трудно соблюдать при электроосаждении или ионизации металлов. По этой причине весьма часто пользуются переходными методами, в которых измерения занимают достаточно короткое время и микроструктуру электрода можно считать постоянной. [c.39]

    При протекании в жидкой фазе реакции между растворенным газообразным компонентом и поглотителем (или его активной составляющей) часть компонента переходит в связанное состояние и концентрация свободного компонента в жидкости понижается. Такое понижение приводит к увеличению концентрационного градиента и ускорению абсорбции в жидкой фазе по сравнению с физической абсорбцией. Это ускорение тем больше, чем выше скорость химической реакции, т. е. чем быстрее растворенные молекулы компонента переходят в связанное состояние. [c.129]

    Если два необратимых процесса представляют теплопроводность и диффузию, коэффициент 12 соответствует термодиффузии. Это означает, что концентрационный градиент возникает в однородной смеси под влиянием температурного градиента. Заменяя потоки (3.3) их значениями в выражении (2.23) для источника энтропии, получим квадратичную форму [c.44]


    Это соотношение является обобщением неравенства (11.26). Главная его особенность состоит в том, что неустойчивость, возникновение которой связано с обращением в нуль (11.98), зависит теперь от конкуренции не двух процессов, как в (11.26), а трех диссипации кинетической энергии, выделения энергии за счет выталкивающих сил, возникающих благодаря температурному и концентрационному градиентам. Каждый из последних двух эффектов может быть как стабилизирующим, так и дестабилизирующим. [c.171]

    В настоящее время общепринят механизм окисления Вагнера, по которому основным фактором, определяющим скорость высокотемпературной коррозии, является интенсивность диффузии коррозионноактивных реагентов через оксидную пленку к металлу под воздействием концентрационного градиента. [c.11]

    Распределение скоростей седиментации зависит от концентрационного градиента, который устанавливается в граничной области, и его изменения во времени. [c.114]

    Для большинства газов DJ примерно равно средней длине свободного пробега и очень близко к 10 см при стандартных температуре и давлении (см. табл. VIII.3), так что в объеме 500 см гд 5 см) значение Р должно быть порядка 0,002/е мм рт. ст. или выше для того, чтобы диффузия имела значение для обрыва на стенках. Таким образом, если эффективность захвата радикала стенкой равна 1, то диффузия играет важную роль при давлениях выше 0,002 мм рт. ст. Однако если е = 10", то это давление равно 20 мм рт. ст. или выше. Ниже этих давлений радикалы гибнут на стенках, но заметные концентрационные градиенты отсутствуют. [c.386]

    Ионы Na" и 1 в реакции не участвуют. Распределение различных ионов в пленке показано на рис. V-8. Для каждого иона можно записать уравнение типа уравнения (1,31), выражающее скорость переноса этого иона как функцию от подвижностей и локальных концентраций и концентрационных градиентов всех присутствующих ионов. Для упрощения принято, что градиенты концентрации неизменны (например, для иона он равен р/б во всех точках), а значения концентрации каждого иона в уравнении (1,31) взяты усредненными в пленке, например р/2 — для Н +. Таким образом, можно записать четыре уравнения типа (1,31) для скоростей переноса всех четырех участвующих ионов, выраженных через концентрации т, п, р, q, S, толщины пленок б и б и подвижности ионов. Учитывая, что Ru+ = R - = —Roh- = (скорость абсорбции НС1) и i Na+ = о, можно избавиться от неизвестных т, s и б и получить выражение для Rb/p через подвижности ионов и qln и qlp. Скорость физической абсорбции хлористого водорода водой с той же толщиной пленки б была бы pDh i/6 отсюда коэффициент ускорения Е, показывающий, во сколько раз реакция ускоряет абсорбцию, выражается отношением R8Ip)IDh i- [c.143]

    В частном случае, когда лимитирующей кинетической стадией является внешний перенос свободной влаги от материала к окружающей среде, температурный и концентрационный градиенты внутри материала обычно невелики. В этом случае температура материала может приниматься постоянной и равной температуре мокрого термометра, а процесс сушки рассматриваться как конвективный теплоперепос. В этих условиях постулируют, что количество удаленной влаги определяется количеством переданного тепла. Этот период сушки обычно называют периодом постоянной скорости сушки (или первым периодом). Продолжительность периода постоянной скорости обычно рассчитывается по уравнениям теплового баланса (для этого достаточно высоты слоя в 300—400 мм) или по уравнениям теплообмена. В последнем случае коэффициенты теплоотдачи могут быть определены по специальным расчетным формулам (см., например, гл. X этой книги или монографию Гельперина с соавт. ). [c.514]

    Электродвижущая сила этого элемента Етв. возникает при уменьшении свободной энергии Абг реакции окисления металла, что приводит к появлению концентрационного градиента, вызывающего диффузию (градиент поля, приводящий к миграции заряженных частиц, по Вагнеру, не возникает из-за равномерного распределения положительных и отрицательных зарядов в объеме окисла). На поверхности раздела металл — пленка протекает анодная реакция по фор- Ме Пленпа Газ муле (44)  [c.61]

    Для определения кинетики необходимо использовать безгра-диентные или проточно-циркуляционные установки [39, 41, 121], позволяющие проводить реакцию в течение длительного времени, достаточного для того, чтобы образец катализатора достиг стационарных условий. Циркуляционный реактор похож на дифференциальный, но за счет внешней или внутренней циркуляции газа температурные и концентрационные градиенты по слою катализатора, обусловленные протеканием реакции, сводятся к минимуму. Как дифференциальный, так и циркуляционный реакторы применяют для того, чтобы добиться изотермического режима. Но на практике к нему приближается только циркуляционный реактор. Заметим, что для измерений истинной кинетики необходимо вместо таблеток использовать очень мелкие частицы катализатора с тем, чтобы свести к минимуму влияние массопереноса. [c.260]

    Случай I. Отсутствуют температурные и концентрационные градиенты внутри и вне гранулы катализатора. Исиользуегся уравнение модели (21) - (25). [c.112]

    Существуют температурные и концентрационные градиенты в пределах и в 1Ю1ран№шом слое гранулы катализатора. Предполагаем справедливой двухфазную модель. Они интегрируются последовательно с учетом соотаетствующих граничных условий. Первоначально интегрируются уравнения модели зерна (1)-(3) для задачи Неймана с использованием инвариантных соотношений (10)-(13). Реализуется следующий алгоритм  [c.117]

    Так как концентрационные градиенты в порах катализатора или адсорбента часто влияют на скорость реакции, следует привести данные, позволяющие оценить роль этого эффекта. Необходи.мо обсудить диффузионные ограничения. [c.342]

    Некоторые результаты расчетов нестационарных режимов промышленного реактора окисления о-ксилола представлены на рис. 3.52. Они уточняют выводы по квазигомогенной модели. Из рис. 3.52 видно, что температурные градиенты в зерне незначительны, т.е. зерно изотермично. В противоположность этому имеются значительные концентрационные градиенты в зерне, указывающие на сильное влияние внутренней диффузии. Разности концентрации в зерне наиболее значительны в передних горячих участках слоя катализатора и уменьшаются с понижением температуры вследствие более сильного охлаждения по сравнению с тепловыделением в последних участках слоя. Разности концентрации и температуры между наружной поверхностью зерна и газовой фазой в общем были малы, только в горячей точке разность температуры превышала 5° по оси реактора. [c.173]

    В точке С сектора III ситуация довольно неожиданная несмотря на то, что плотность уменьшается при переходе снизу вверх, система неустойчива. Этот пример показывает, что простая механическая интерпретация возникновения неустойчивости, данная нами в разд. 11.3, здесь неприменима. Теперь в (11,98) третий член дестабилизирующий (отрицательный), тогда как первые два—стабилизирующие (положительные). Неустойчивость является следствием того, что производство энергии выталкивающими силами, возникающими из-за концентрационных градиентов, превалирует над диссипацией энергии в двух первых эффектах. В результате появляется свободная конвекция. Однако возникающее при этом ячеечное движение совершенно отлично от того, которое наблюдается в однокомпонентной проблеме Бенара (подробно этот вопрос рассмотрен в работе [167]). [c.172]

    Энергия, освобождающаяся при окислении субстратов и последующем переносе электронов в дыхательной цепи, используется не только на синтез АТФ, но и для осуществления других функций митохондрий, например для активного транспорта ионов a + через митохондриальную мембрану. Если к суспензии аэробно инкубируемых митохондрий в присутствии субстрата добавить некоторое количество ионов a + (в виде какой-либо его соли), то по истечении небольшого промежутка времени весь добавленный Са + оказывается во внутримитохондриальном пространстве. В процессе активного транспорта создается и поддерживается высокий концентрационный градиент ионов Са + по обе стороны митохондриальной мембраны. Когда функционирование дыхательной цепи полностью блокировано, транспорт может обеспечиваться за счет энергии гидролиза АТФ. [c.449]

    К числу наиболее хорощо охарактеризованных эндергонических реакций митохондрий относятся наряду с окислительным фосфорилированием АДФ восстановление НАД+ сукцинатом, трансгидрогеназная реакция и перенос ионов Са + против концентрационного градиента. Изучение кинетических взаимоотнощений таких реакций при их одновременном протекании важно не только для понимания механизмов регуляции метаболизма митохондрий в целом, но и для выяснения механизмов, лежащих в основе любого из путей трансформации энергии в митохондриях. [c.469]


Смотреть страницы где упоминается термин Концентрационный градиент: [c.170]    [c.170]    [c.118]    [c.154]    [c.458]    [c.62]    [c.21]    [c.120]    [c.458]    [c.170]    [c.456]    [c.472]    [c.292]    [c.111]   
Химия азокрасителей (1960) -- [ c.322 ]




ПОИСК







© 2025 chem21.info Реклама на сайте