Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный насос

    Особое место среди них занимают ионные насосы (транспортные АТФазы) — белки, способные за счет энергии гидролиза АТФ переносить одно- и двухвалентные катионы (или анионы) через клеточные и внутриклеточные мембранные структуры против градиента концентрации. Так, Са-АТФаза саркоплазматического ретикулума (СР) регулирует процессы сокращения-расслабления в мышцах разных типов, аккумулируя Са2+ из цитоплазмы внутрь СР. [c.358]


    Хемосорбция (активных газов) и блокирование (инертных газов) лежат в основе работы геттерно-ионных насосов и их многочисленных разновидностей. В них отсутствует масло и это является их важным преимуществом. Поглощающим веществом служит свежеосажденный на внутреннюю полость слой титана, тита-но-молибденового сплава или хрома, полученный при сублимационном, электронно-лучевом или ионном распылении. В последнем варианте насосы называются электроразряд-ными. Процесс откачки геттерно- [c.135]

    Протонный насос представляет собой значительно более сложную систему по сравнению с ионными насосами, описанными ранее. Его физиологическая функция заключается не в ионном транспорте, а, наоборот, в использовании ионного градиента для синтеза АТР — наиболее важного энергетического источника клетки. Митохондриальная электронная транспортная цепь, сопряженная с дыхательной цепью, генерирует необходимый градиент протонов. Некоторые микроорганизмы в качестве источника энергии вместо дыхания используют свет (см. ниже). [c.179]

    Многие ионы металлов необходимы клеткам живых организмов. Это Na, К, Mg, Са, Мп, Fe, Со, Си, Мо, Zn. Они составляют 3% массы человеческого тела. Na(I), К(1) и Са(П) особенно важны как участники так называемого ионного насоса , который сопровождается активным транспортом метаболитов и энергетическими процессами. Другие металлы, такие, как Zn(II) и Со(И), обнаружены в различных металлоферментах, где они координируются с аминокислотами и ускоряют реакции, происходящие в активном центре [214]. Они выступают как сверхкислотные катализаторы, оказывающие прямое или матричное действие. В то же время ионы Fe(II) и u(II) предпочтительно связываются с простетическими группами порфиринового типа и участвуют во многих системах электронного переноса. [c.342]

    ЮТ работе прибора при высоких увеличениях. Эти поля имеют частоты от 50 до 200 Гц и вблизи электронно-оптической колонны должны быть уменьшены по величине до значений 5— 10 мГс. Попытка свести к минимуму эти эффекты была описана в работе [8]. Для того чтобы уменьшить влияние загрязнений настолько, насколько это возможно, для высоковакуумной откачки используют ионный насос и при этом соприкосновение системы с маслом сводится к минимуму. Использующийся при работе с очень высоким разрешением столик объектов изготавливается таким образом, что механический контакт между образцом и основанием камеры во время исследований отсутствует за счет того, что вибрации снижаются ниже уровня детектирования. Низкочастотные механические вибрации (2—10 Гц) могут вызывать вибрацию всего прибора. Прибор следует изолировать от воздействия этих вибраций, иначе нельзя достичь высокого разрешения. Все эти эффекты могут быть устранены при тщательном конструировании прибора, и поэтому они не являются очень важными при рассмотрении предельного разрешения. Однако они являются существенными при практической эксплуатации прибора. [c.20]


    Достоверно установлено, что транспорт На+ и К+ ионным насосом обеспечивается энергией гидролиза АТР. Функция (На++ Б +К+)-зависимой АТРазы  [c.364]

    Суммарный ток покоя должен уравнять концентрации внутри и снаружи клетки. Когда мембрана возбуждена, скорость ионных потоков увеличивается. Для того чтобы эти потоки ингибировать, т. е. сохранить длительный постоянный потенциал покоя, пассивная диффузия катионов должна быть уравновешена активным транспортом (ионным насосом). К этому вопросу мы еще вернемся в гл. 6. [c.114]

Рис. 7.2. Схематическое изображение ионных потоков (для К+ и Ыа+) через возбудимую мембрану в состоянии покоя. Пассивные диффузионные потоки частично совпадают с электрохимическим градиентом (поток Йа+ —внутрь, поток К+— наружу), а активный транспорт, обусловленный специфическим ионным насосом, частично направлен против градиента (Ыа+ —наружу. К" "— внутрь). Диффузионные потоки и работа насоса выделены в виде заштрихованных зон соответствующая ширина каналов свидетельствует о величине потока, а их наклоны —о электрохимических градиентах. Диффузионные токи резко возрастают во время активности [16]. Рис. 7.2. Схематическое изображение <a href="/info/594257">ионных потоков</a> (для К+ и Ыа+) через возбудимую мембрану в состоянии покоя. Пассивные <a href="/info/72590">диффузионные потоки</a> частично совпадают с <a href="/info/191333">электрохимическим градиентом</a> (поток Йа+ —внутрь, поток К+— наружу), а <a href="/info/97001">активный транспорт</a>, обусловленный <a href="/info/1889370">специфическим ионным</a> насосом, частично направлен против градиента (Ыа+ —наружу. К" "— внутрь). <a href="/info/72590">Диффузионные потоки</a> и <a href="/info/1905927">работа насоса</a> выделены в виде заштрихованных зон соответствующая ширина каналов свидетельствует о величине потока, а их наклоны —о <a href="/info/191333">электрохимических градиентах</a>. <a href="/info/220516">Диффузионные токи</a> резко возрастают во время активности [16].
    Ингибиторы метаболической энергии блокируют ионный насос, но не оказывают влияния на пассивный ионный транспорт, который не изменяется, даже если цитоплазма удаляет- [c.131]

    Таким образом, нейрон мог бы существовать без работы ионных насосов лишь некоторое время, затем эта клетка погибла бы не только из-за уменьшения концентрации К+ внутри, но и в результате резкого повышения концентрации К+ снаружи. [c.168]

    Так или иначе, активный транспорт поддерживает концентрации Ыа+ и К+. АТР (топливо, необходимое для работы ионного насоса) играет важную роль, связывая клеточный метаболизм с проводимостью нервного импульса. [c.168]

    Три примера АТР-зависимых ионных насосов [c.168]

    На что похож ионный насос  [c.182]

    Обычно обезгаживание продолжается по крайней мере 1 час, предпочтительно в несколько стадий. Затем повторяется цикл прогревания. С системой, держащей вакуум, можно получить давление порядка 10 >° жж рт. ст. после одного прогревания при непрерывной работе ионного насоса. Несмотря на это, стенки системы остаются все еще загрязненными. Автором и сотр. найдено, что при вводе в эксплуатацию новой установки желательно проводить по [c.261]

    Годы, прошедшие с момента выхода предыдуш,его издания данной монографии (имеется перевод Практическая растровая электронная микроскопия.—М. Мир, 1978), ознаменовались бурным развитием принципов электронно- и ионно-зондовой аппаратуры и методов исследования. В первую очередь сюда следует отнести создание серийных растровых оже-электронных микроанализаторов, таких, как ЛАМР-10 (фирма ЛЕОЬ), установок электронно- и ионно-лучевой литографии, метрологических и технологических растровых электронных микроскопов и т. д. Существенно улучшились параметры приборов. Так, сейчас серийные растровые электронные микроскопы с обычным вольфрамовым термокатодом обладают гарантированным разрешением 50—60 А, модели высшего класса с наиболее высокими характеристиками имеют встроенную мини-ЭВМ, с помощью которой автоматически устанавливается оптимальный режим работы прибора, существенно облегчилось и стало более удобным обращение с прибором. В ряде случаев вместо обычных паромасляных диффузионных насосов для откачки используются турбомолекулярные и ионные насосы, создающие чистый вакуум вблизи образца, за счет чего снижается скорость роста пленки углеводородных загрязнений на объекте. [c.5]

    В настоящее время более общепринятой является не ионообменная гипотеза, а гипотеза существования в клетках ионного насоса, выкачивающего из клеток ионы На+ и накачивающего в них ионы К+. Для. изучения этого процесса были использованы различные методические подходы. Из гигантского аксона кальмара можно, например, удалять всю цитоплазму, а оста ВШуюся клеточную оболочку заполнять различными ионными растворами. Сходным образом можно заполнить и тени эритроцитов. Наличие переноса ионов внутрь клеток и из клеток в окружающую среду наблюдалось как на указанных выше объектах, так и на различных интактных клетках других типов. Оказалось, чтО перенос ионов блокируется ингибиторами, например цианидом, который, как известно, нарушает почти все процессы окислительного метаболизма в клетках. Однако блокирование цианидом сним-ается при добавлении к клеткам АТР или других фосфатных соединений, характеризующихся высоким значением потенциала переноса групп. [c.361]

    Химическая природа участков связывания ионов Ыа+ и К+ в ионном насосе неизвестна. Однако некоторые соображения на этот счет позволяют высказать данные, полученные при изучении антибиотиков пептидной природы, многие из которых связывают ионы металлов и катализируют их диффузию через мембраны [58]. Примером соединения такого рода может служить циклический депсипептид (пептид, который наряду с амидными содержит также и сложноэфирные связи) — валиномицин. В состав этого антибиотика входят остатки О- и Ь-валина, L мoлoчнoй кислоты и О-оксиизовалериановой кислоты. [c.365]


    Один из возможных результатов переноса фосфатной группы на функциональную группу белка состоит в индуцировании конформаци- онного изменения в молекуле белка. Действительно, имеются данные, весьма убедительно свидетельствующие о наличии таких изменений при действии АТР-зависимых ионных насосов (гл. 5, разд. Б,2,в) и при мышечной работе (дополнение 10-Е). Конформационные изменения могут также возникать в результате фосфорилирования регуляторных центров белков. Вполне возможно, что фосфорилирование имидазольной группы, соединенной водородной связью с группой С = 0 амидной группы полипептидной цепи белковой молекулы, ведет к таутомериым превращениям, аналогичным тому, которое было приведено в уравнении (6-84). Оно может способствовать конформационному изменению или может переводить белок в состояние, богатое энергией , способное самопроизвольно изменять свою форму, как это имеет место при мышечных сокращениях. [c.139]

    Оксид азота при взаимодействии с гемом гуанилатциклазы способствует быстрому образованию цГМФ, который снижает силу сердечных сокращений путем стимулирования ионных насосов, функционирующих при низких концентрациях Са . Однако действие N0 кратковременное, несколько секунд, локализованное-вблизи места его синтеза. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает N0. [c.295]

    Карнозин и ансерин—специфические азотистые вещества скелетной мускулатуры позвоночных. Они увеличивают амплитуду мышечного сокращения, предварительно сниженную утомлением. Работами акад. С.Е. Северина показано, что имидазолсодержащие дипептиды не влияют непосредственно на сократительный аппарат, но увеличивают эффективность работы ионных насосов мышечной клетки. [c.651]

    Для эмбриональной мышечной ткани характерно высокое содержание нуклеопротеинов, а также РНК и ДНК. По мере развития эмбриона количество нуклеопротеинов и нуклеиновых кислот в мышечной ткани быстро уменьшается. Высокоэнергетических соединений (АТФ и креатинфосфат) в функционально незрелой мышце значительно меньше, чем в мышцах зрелых особей. Имидазолсодержащие дипептиды (ансерин и карнозин) появляются в мышечной ткани в строго определенный период онтогенеза. Время появления этих дипептидов тесно связано с мышечной функцией и совпадает с формированием рефлекторной дуги, обеспечивающей возможность двигательного рефлекса, появлением Са -чувстви-тельности актомиозина и началом работы ионных насосов. Имеются также характерные особенности в ферментных и изоферментных спектрах эмбриональной мышечной ткани. Так, установлено, что в ходе онтогенеза изменяется изоферментный спектр ЛДГ. В экстрактах из скелетных мышц [c.653]

    Весьма перспективны ионные насосы, которые в сочетании с насосами предварительного разрежения также могут обеспечить остаточное давление на уровне 13,6 мПа. Принцип действия ионного насоса можно представить по схеме, приведенной на рис. П1-21, б. Между двумя кольцевыми электродами, которыми снабжена стеклянная трубка, создается электрическое поле. Катод располагается в конце трубки, присоединяемом к насосу предварительного разрежения, анод —со стороны вакууми-руемого аппарата. После включения насоса предварительного разрежения между электродами трубки вследствие ударной ионизации электронами, ускоряемыми электрическим полем в направлении к аноду, возникают положительные ионы, которые движутся к катоду. Отдавая последнему свой заряд, ионы превращаются в нейтральные молекулы, продолжающие двигаться за катодом к насосу предварительного разрежения, которым они удаляются из системы. Благодаря этому в трубке поддерживается более низкое давление, чем в вакуумируемом аппарате. [c.176]

    Термин строительный блок применительно к мембранным молекулам может создать ложное впечатление, что их функции являются исключительно структурными. Из материала двух последующих глав станет ясно, что ббльшая часть этих молекул, если не все, выполняют дополнительные функции. Они могут служить барьерами или воротами, антигенами или рецепторами, ферментами или ионными насосами, функционировать как транслоказы (белки-переносчики для транспорта метаболитов через мембраны) или как специфические центры узнавания. Отдельные молекулы мембран не следует рассматривать изолированно, так как их характерные свойства проявляются при взаимодействии с другими молекулами мембран. В последние [c.35]

    Нейрональная мембрана, рассматриваемая как цитоплазматическая мембрана, несет в клетке не только пассивную структурную функцию. Она служит барьером для поддержания внутриклеточного состава и функций клетки (ионы, электрический потенциал, метаболиты) и для ее компартментации (клеточные органеллы, везикулы нейромедиаторов), играет активную (ионные насосы, ферменты) и пассивную (ионные каналы, высвобождение медиатора) роли при передаче нервного импульса. Она обладает специфическими характеристиками, необходимыми для развития нервной системы и установления синаптических связей (клеточная адгезия и узнавание). Она проводит также межклеточные сигналы (гормоны, медиаторы, лекарства). [c.88]

    В этой главе рассматриваются компоненты мембран клетки, регулирующие и обеспечивающие транспорт ионов, особенно Na+ и К+ (рис. 6.1). Подобные мембранные системы, расходуя метаболическую энергию клетки, могут перекачивать ионы из менее концентрированного в более концентрированный раствор (активный транспорт, ионный насос). В результате теплового движения и под действием электрохимического потенциала ионные токи л-югут менять направление без потребления метаболической энергии (пассивный транспорт). Для проведения нервного импульса энергетически необходимы оба процесса — активный транспорт ионов против градиента концентрации (как бы в гору) и пассивная диффузия по градиенту (как бы с горы). Таким образом, чтобы поддерживать ионный баланс, пассивные ионные токи должны компенсироваться активным транспортом. Здесь рассматривается только пассивный ионный транспорт активный транспорт и его Na+, К+-насос, движущей силой которого является энергия, высвобождаемая в результате гидролиза АТР (Na, К-зависимая АТРаза, или Na+, К -насос),. обсуждаются в гл. 7. Такое подразделение уже указывает на то, что в процессе принимают участие биохимически различные структуры. Существует несколько доказательств в пользу этого. [c.130]

    В гл. 6 рассматривались натриевые и калиевые каналы, регулирующие пассивный ток ионов во время потенциала действия (рис. 7.1). Однако еще одна функция аксональной мембраны связана с проведением нервных импульсов — активный транспорт ионов. Если бы вход ионов натрия в клетку сопровождался только выходом ионов калия, градиент концентрации между обеими сторонами клетки вскоре исчез. Пассивное проникновение ионов Na+ через мембрану в состоянии покоя приводит к тому же эффекту, поэтому входящие ионы натрия должны вновь выводиться наружу, а диффундирующие снаружи ионы К+ должны направляться внутрь аксона. Естественно, что для этого должна расходоваться энергия, поскольку указанный процесс осуществляется против градиента концентрации. Именно этой цели и служат ионные насосы, содержащиеся в мембране аксона благодаря метаболической энергии, накопленной в АТР, они осуществляют активный транспорт ионов для поддержания мембранного потенциала. Направление движения иона и направления градиентов схематически изображены на рис. 7.2. Ходжкин и Кейнес [1] исследовали активный транспорт ионов Na+ через мембрану нерва. Они показали, что поток радиоактивных ионов Na+ из клетки ингибируется 2,4-динитрофенолом (рис. 7.3, а), который блокирует синтез АТР. В ходе дальнейших экспериментов Ходжкин и Кейнес установили, что транспорт Na+ обеспечивается при участии ферментов (рис. 7.3,6). Охлаждение клетки до 9,8 °С (или до 0,5 °С) явно замедляло выход ионов натрия, хотя известно, что пассивная диффузия Na+ не столь сильно зависит от температуры. [c.167]

    Наиболее четкое представление об ионном насосе было получено в ходе изучения пурпурной мембраны галофильных бактерий. Данный светозависимый протонный насос представляет собой часть мембранного комплекса, включающего рецепторы (в данном случае фоторецепторы), посредством которых внеклеточный сигнал (свет, источник энергии) превращается в внутриклеточ- [c.182]

    Таким образом, уже с упомянутыми оговорками можно сделать следующий вывод имеются различные стадии и различные механизмы памяти — долговре.менная память, зависящая от белкового биосинтеза, и кратковременная память, которая каким-то образом связана с уабаинчувствительным ионным насосом. Довольно часто постулируется еще дополнительная стадия — сверхкратковременная память, имеющая электрофизиологическую природу. [c.343]

    Важнейшую роль в клетке играют мембранные системы актианого (т. е. энергозависимого) транспорта катионоа против градиента их электрохимического потенциала, использующие для процесса транслокации энергию гидролиза АТР и объединенные под названием транспортных аденозинтрифосфатаз. или ионных насосов. [c.618]


Смотреть страницы где упоминается термин Ионный насос: [c.372]    [c.46]    [c.160]    [c.364]    [c.592]    [c.314]    [c.135]    [c.27]    [c.28]    [c.171]    [c.184]    [c.819]    [c.254]   
Биохимия Том 3 (1980) -- [ c.139 , c.360 , c.369 ]

Биофизика Т.2 (1998) -- [ c.395 ]

Жизнь зеленого растения (1983) -- [ c.58 , c.72 , c.225 , c.280 ]




ПОИСК







© 2024 chem21.info Реклама на сайте