Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Число ионов

    Следовательно, эквивалент основания может быть вычислен как частное от деления молекулярной массы основания на заряд иона металла или, что то же самое, на кислотность основания. По тем же соображениям эквивалент соли может быть вычислен как частное от деления ее молекулярной массы на произведение числа ионов металла и его заряда. [c.5]


    Потенциальная энергия двух противоположно заряженных ионов на этом расстоянии равна 2 кТ, при этом кинетическая энергия недостаточна для преодоления взаимного притяжения ионы остаются связанными в пару, которая не участвует в электропроводности, хотя и не является настоящей молекулой. Можно подсчитать число ионов, которые находятся вокруг иона противоположного знака между критическим расстоянием д и расстоянием наибольшего сближения. Таким способом определяется число ионных пар, степень их диссоциации и константа диссоциации ионных пар по закону действия масс. Б воде при 25° С для одно-одновалентного электролита критическое расстояние невелико (( = 3,57 А), число ионных пар очень мало, имеется почти полная диссоциация. Для ионов с большими зарядами, а также в растворителях с небольшой диэлектрической проницаемостью величина д имеет большие значения, и ассоциация увеличивается. Ассоциация зависит также от радиуса ионов и растет с уменьшением этого радиуса (т. е. увеличением расстояния наибольшего сближения), Так, в растворах ЬаРе (СМ) 6 в смешанных растворителях, диэлектрическая проницаемость которых О <57, константа диссоциации ионных пар уменьшается с уменьшением О в количественном согласии с теорией. Это падение константы лежит в пределах от 10" до 10 . В растворе с /п=0,01 степень диссоциации ионных пар по мере уменьшения О изменяется от 0,3 до 0,03 число ионных пар очень велико. В водных растворах с 0 = 81 содержание ионных пар при малых концентрациях составляет доли процента. [c.416]

    V — число ионов, на которое распадается при диссоциации одна молеку- [c.8]

    Сущность этого способа, который в последние годы широко применяют в промышленности, заключается в нейтрализации поверхностных электростатических зарядов ионами, которые образуются при применении прибора-нейтрализатора. Этот прибор создает большое число ионов, взаимодействующих с противоположными по знаку зарядами. Ионизация воздуха осуществляется двумя способами действием электрического поля высокого напряжения и радиоактивным излучением. [c.342]

    Число ионов V, образовавшихся в результате диссоциации одной молекулы электролита, так >ive как и величина и знак заряда этих ионов, зависят от его природы. Различают следующие типы электролитов. [c.34]


    Почему скорость этой реакции не пропорциональна числу ионов каждого сорта соответственно стехиометрическому уравнению реакции 10. Для реакции [c.399]

    Предположим, вам неизвестно значение числа Авогадро, но вы знаете, что фарадей-это заряд, необходимый для восстановления 1 моля ионов N3 т.е. для соединения каждого иона с одним электроном (как представлял его Милликен). Вычислите число ионов в I моле, т. е. число Авогадро. [c.50]

    В растворах сильных электролитов концентрация ионов довольно велика, так что силы межионного взаимодействия заметно проявляются даже при малой концентрации электролита. В результате ионы оказываются не вполне свободными в своем движении, и все свойства электролита, зависящие от числа ионов, проявляются слабее, чем следовало бы ожидать при полной диссоциации электролита на не взаимодействующие между собой ионы. Поэтому для описания состояния ионов в растворе пользуются, наряду с концентрацией ионов, их активностью, т. е. условной (эффективной) концентрацией ионов, в соответствии с которой они действуют в химических процессах. Активность иона а (моль/л) связана с его молярной концентрацией в растворе См соотношением  [c.133]

    Пусть объем раствора равен V, полное число ионов первого вида равно Л ь второго —Л 2, г-го —/V и последнего — а их заряды равны соответственно ег1 ег , ег,. еги. Так как число зарядов положительных и отрицательных понов электролита одинаково, то [c.84]

    При растворении кислых солей в растворе образуются катионы металла, сложные анионы кислотного остатка, а также ионы, являющиеся продуктами диссоциации этого сложного кислотного остатка, в том числе ионы Н+. Например, при растворении гидрокарбоната натрия диссоциация протекает согласно следующим [c.244]

    Поток ионов, т. е. число ионов, проходящих через единичное сечение раствора за единицу времени (р,), можно определить как [c.103]

    В первом приближении можно определить число ионных пар г /, интегрируя в пределах от (расстояние, соответствующее наибольшему сближению ионов в ионной паре) до гв (критическое расстояние, на котором еще возможно существование ионной нары). Тогда [c.452]

    Очевидно, что сумма p + q в уравнении (XVI, 4) равна общему числу ионов, образующихся при диссоциации одной молекулы. Обозначив эту сумму через v, из уравнения (XVI, 2) найдем среднее суммарное число частиц (ионов и молекул), образующихся при электролитической диссоциации одной молекулы, которое, очевидно, равно коэффициенту Вант-Гоффа i  [c.390]

    Теория Аррениуса не учитывала этого обстоятельства, и многие выводы этой теории оказались в противоречии с опытом. Аррениус предполагал, что взаимодействие ионов в растворе не влияет на их распределение и движение, которые остаются хаотическими, как и в смесях идеальных газов. Исходя из этого, он утверждал, что свойства отдельных ионов в растворе не зависят от концентрации, а некоторые свойства раствора в целом пропорциональны числу ионов (или общему числу частиц растворенного вещества). Так, электропроводность раствора по Аррениусу должна быть пропорциональна числу ионов и может служить мерой степени диссоциации. [c.394]

    V — число ионов при диссоциации молекулы р и Ро— плотности соответственно раствора и растворителя. [c.399]

    Энергия создания ионной атмосферы является сложной функцией концентрации раствора, от которой зависят также Г и X. Энергия заряжения центрального иона тоже входит в величину изобарного потенциала раствора, однако она прямо пропорциональна заряду иона, а при расчете на определенный объем раствора — прямо пропорциональна числу ионов, т. е. массе (само не зависит от концентрации). Поэтому при дальнейшем нахождении химического потенциала, т. е. при дифференцировании по массе, эта энергия дает постоянное, независимое от концентрации слагаемое, включаемое в которое мы не учитываем. [c.410]

    Кинетика анодного растворения металлов должна зависеть пе только от концентрации гидроксильных ионов, но и вообще от анионного состава раствора. Обычно принималось, что другие анноны в той или иной степени способны вытеснять ионы ОН с поверхности растворяющегося металла и тем самым снижать н каталитическое действие. С такой точкой зрения согласуется, например, замедление процесса растворения железа при переходе от сульфатных к хлоридным растворам с тем же pH. Ионы С1 обладают большей поверхностной активностью, чем иопы 504 или Н504", и замещают большее число ионов 0Н , т. е. заметнее снижают их каталитическое действие на процесс растворения. Однако в более общем случае, как это было показано Я. М. Колотыркиным с сотр., любые анионы способны, так же как и ионы ОН-, сами катализировать процесс анодного растворения металлов. Результативный эффект определяется поэтому конкретными условиями протекания процесса растворени.ч. В области низких pH, где концентрация ионов ОН мала и доля занятой ими поверхности растворяющегося металла незначительна, другие анионы (например, анионы серной кислоты) могут адсорбироваться на свободной поверхности, не уменьшая поверхностной концентрации гидроксильных ионов. В этих условиях скорость растворения должна расти при увеличении общей когщентрации анионов. При высоких pH, где концентрация ионов 0Н и доля занятой ими поверхности велики, на первый план выступает эффект вытеснения гидроксильных ионов другими анионами, и скорость растворения при повышении обшей концентрации анионон может уменьшаться. [c.478]


    Первоначальное изучение электретов, полученных из цеолитов, показало, что при напряженности электрического поля порядка 10 В/м и выше образуется гомозаряд за счет пробоя газового промежутка между поверхностью образца и электродом [686]. Эти опыты проводили при наличии зазора в 1 мм между образцом и потенциальным электродом. Знак поверхностного заряда был установлен по направлению отклонения нити струнного электрометра при опускании электрода до его соприкосновения с поверхностью образца. Величина гомозаряда а зависела от приложенного напряжения и (рис. 16.1), что можно связать с увеличением числа ионов в газовом промежутке. При малом напряжении (левая часть кривой на рис. 16.1) величина гомозаряда растет с увеличением времени поляризации. В этом случае возрастало число ионов, образующихся в газовом зазоре и оседающих на поверхность образца. Уменьшение давления газа при не слишком большой разности потенциалов вело к возрастанию гомозаряда [686], так как при этом росла длина свободного пробега. При 113 К время релаксации гомозаряда очень велико — измерения не обнаруживали изменений этого заряда за 2,5 ч. Однако при той же температуре знак гомозаряда менялся при изменении знака поляризующего напряжения, действующего всего 10 с. Это можно объяснить тем, что гомозаряд фиксировался на поверхности образца цеолита [687]. [c.256]

    Помимо простых (одноатомных) ионов в соединениях могут образовываться комплексные (многоатомные) ионы. В состав комплексного иона входят атом металла или неметалла, а также несколько атомов кислорода, хлора, молекулы аммиака (NH3), гидроксидные ионы (ОН ) или другие химические группы. Так, сульфат-ион, SO , состоит из атома серы и четырех окружающих его атомов кислорода, занимающих вершины тетраэдра, в центре которого находится сера общий заряд комплексного иона равен — 2. Нитрат-ион, NO , содержит три атома кислорода, расположенных в вершинах равнобедренного треугольника, в центре которого находится атом азота общий заряд комплексного иона равен — 1. Ион аммония, NH4, имеет четыре атома водорода в вершинах тетраэдра, окружающего атом азота, и его заряд равен + 1. Все эти ионы рассматриваются как единые образования, поскольку они образуют соли точно таким же образом, как и обычные одноатомные ионы, и сохраняют свою индивидуальность во многих химических реакциях. Нитрат серебра, AgNOj, представляет собой соль, содержащую одинаковое число ионов Ag " и NOj. Сульфат аммония-это соль, в которой имеется вдвое больше ионов аммония, NH , чем сульфат-ионов, SOj она описывается химической формулой (NH4)2S04. Другие распространенные комплексные ионы указаны в табл. 1-5. [c.33]

    Энтропия тем больше, чем сложнее химический состав вещества. Это правило выполняется для кристаллов ионных солей с различным числом ионов на моль вещества  [c.63]

    Из (3.10) п (3.11) следует, что реально определимы химические потенциалы, а следовательно, и а <тпвности, и коэффициенты активностей лишь молекулярных веществ, в том числе и электролита в целом. Активность отдельных заряженных частиц, в том числе ионов, на которые распадается электролит, в общем случае экспериментально определить нельзя ее можно оценить приближенно лишь в области весьма разбавленных растворов. Действительно, в силу условия электронептральностн раствора изменение содержания ионов данного вида (да1шого заряда) в сколько-нибудь заметных пределах без одновременного и эквивалентного пзмене-иия содержания ионов противоположного знака невозможно. Определяются обычно активность эл( ктролита йэ и так называемые средние активности ионов а . Соотношения между ними можно найти следующим образом. Предполагая, что электролит распадается при диссоциации на v+ положительных и V отрицательных ионов, [c.76]

    Структура ионных соединений. Вследствие ненаправленности и ненасыщаемости ионной связи энергетически наиболее выгодно, когда каждый ион окружен максимальным числом ионов противоположного знака. Однако из-за отталки)зания одноименных ионов друг от друга устойчивость системы достигается лишь при определенной взаимной координации ионов. [c.87]

    Таким образом, в обычных условиях ионные соединения представляют собой кристаллические вещества. Поэтому для ионных соединений понятие простых двух-ионных молекул типа Na l и s I теряет смысл, а весь кристалл можно рассматривать как гигантскую молекулу, состоящую из ог-рюмного числа ионов Na l,i и s l . [c.88]

    Однако это верно лишь для слабых электролитов, растворы которых содержат сравнительно немного ионов. У сильных же электролитов вследствие большого числа ионов заметно сказывается электро-( татическое взаимодействие ионов друг с другом. Это лишает ион возможности вести себя независимо от других. Свойства электролита оказываются такими, как будто бы концентрация его ионов ииая, чем на самом деле. Результатом этого является отклонение от закона действующих масс и изменение величины /( при изменении концентрации растворенного вещества (в частности, при разбавлении раствора). [c.182]

    Ионные фториды — кристаллические вещества с высокой температурой плавления. Координационное число иона фтора 6 (NaF) или 4 ( aFj). Ковалентные фториды — газы или жидкости. [c.282]

    Соли, кислоты и основания-при растворении в воде и неко-i торых других полярных растворителях частично или полностью распадаются (диссоциируют) на ионы. Эти ионы существуют в растворе независимо от того, проходит через раствор электрический ток или нет. Вследствие этого число независимо движущихся частиц растворенного вещества больше, чем при отсутствии диссоциации понижение температуры затвердевания, o -i мотическое давление и величины других коллигативных свойств растворов (см. т. I, стр. 247) возрастают прямо пропорционально числу частиц. При уменьшении концентрации диссоциация на ионы (электролитическая диссоциация) по закону действия масс приближается к предельной, т. е. становится практически полной, и коэффициент Вант-Гоффа приближается к простому целому числу (2, 3, 4 — в зависимости от числа ионов, образующихся при растворении молекулы вещества  [c.389]

    Введенные в полярную жидкость ионы нарушают структуру растворителя на больших расстояниях вокруг ионов. На это указывают результаты рентгенографических и спектроскопических 1 следований растворов и некоторые другие факты (например, увеличение энтропии растворителя при высоких концентрациях ионов). Особенно заметно разрушающее действие на структуру воды ионов больших размеров, тогда как ионы небольшого размера помещаются в пустотах воды и мало изменяют ее структуру. Координационное число ионов средних размеров, особенно одновалентных, в разбавленных растворах равно четырем. Очевидно, они просто замещают молекулы воды в целом, не изменяя структуры последней. Правда, они притягивают и ориентируют находящиеся вблизи молекулы воды и, образуя сольватную оболочку, несколько искажают структуру воды в ближайшем окружении (уменьшается объем, теплоемкость, энтропия, сжимаемость раствора). Однако можно считать, что структура воды в растворе искажена незначительно и да51 е в сольватной оболочке напоминает структуру чистой воды. [c.421]

    В отличие от ковалентной связи, ионная связь не обладает направленностью. Это объясняется тем, что электрическое поле иона обладает сферической симметрией, т. е. убывает с расстоянием по одному и тому же закону в любом направлении. Поэтому взап-модействие между ионами осуществляется одинаково независимо от направления. Как уже отмечалось выше (см. рис. 29 на стр. 125), система из двух зарядов, одинаковых по абсолютной величине, но противоположных по знаку, создает в окружающем пространстве электрическое поле. Это означает, что два разноименных иона, притянувшиеся друг к другу, сохраняют способность электростатически взаимодействовать с другими ионами. В этом состоит еще одно различие между ионным и ковалентным типами связи ион-нал связь не обладает насыщаемостью. Поэтому к данному иону может присоединиться различное число ионов противоположного [c.150]

    ИОН стремится двигаться в одну сторону, а окружающая его ионная атмосфера — в нротиаоположиую, вследствие чего направленное перемещение иона замедляется, а следовательно, уменьшается число ионов, проходящих через раствор в единицу времени, т. е. сила тока. Чем больше копцеитра сия раствора, тем сильнее проявляется тормозящее действие ионной атмосферы на электропроводность раствора. Значення степе [и диссоциации хлорида калия, вычисленные при 18 °С по электропроводности его растворов, показывают. что с ростом ко1щентрацнн а падает  [c.241]

    Это реакция второго порядка между СОа и ОН со fexHOMefpfl-ческим коэффициентом, выражающим число ионов ОН , взаимодействующих с одной молекулой Oj, равным 2. Если на каждые два моля NaOH, первоначально присутствующие в растворе, абсорбируется менее одного моля Oj, реакция практически необратима. [c.239]

    Некоторые атомы, в частности атомы металлов, слабо удерживают свои электроны и способны терять один, два или больше электронов, превращаясь в положительно заряженные ионы, или катионы. Атомы многих неметаллов, а также группы атомов, наоборот, присоединяют к себе один или несколько отрицательных зарядов, превращаясь в отрицательно заряженные ионы, или анионы. Соль-это соединение определенного числа катионов и анионов, которое обладает нулевым результирующим зарядом. Общеизвестная поваренная соль Na l содержит равное число ионов Na и С1 . Оттягивание или полное удаление электронов от частицы называется ее окислением, а присоединение или приближение электронов к частице называется ее восстановлением. Поскольку в химических реакциях никогда не происходит образования или уничтожения электронов, окисление одного вещества всегда сопровождается восстановлением какого-либо другого вещества. [c.53]

    Как упоминалось ранее, молекулярный ион возникает каждый раз, когда происходит столкновение молекулы вещества с электроном, энергия которого равна энергии ионизации молекулы или превьпиает ее. Типичная зависимость, связывающая энергию электрона с числом ионных фрагментов данного типа, образующихся при бомбардировке (т.е. с относительной интенсивностью данного пика), изображена на рис. 16.6. [c.328]


Смотреть страницы где упоминается термин Число ионов: [c.44]    [c.84]    [c.97]    [c.269]    [c.560]    [c.30]    [c.425]    [c.426]    [c.427]    [c.128]    [c.241]    [c.603]    [c.103]    [c.143]    [c.176]    [c.181]    [c.272]    [c.274]    [c.315]   
Курс физической химии Издание 3 (1975) -- [ c.542 ]




ПОИСК





Смотрите так же термины и статьи:

Активность, подвижность и числа переноса ионов

Амирханов. Определение числа гидратации ионов. . Амирханов. Предвидение растворимости хорошо растворимой соли в растворах электролитов с общими ионами

Более общее выражение для числа столкновений между ионами Трактовка Дебая

Влияние диафрагмы на числа пер - носа ионов

Влияние темиературы на числа переноса ионов через диафрагмы и на их -потенциал

Восстановление комплексных ионов. Определение координационного числа р и константы нестойкости комплекса

Гидратация ионов числа

Гидратное число иона, уравнение

Гидратные числа положительных ионов

Гидратные числа положительных ионов таблица

Гитторф катодное излучение перенос ионов числа переноса

Групповое разделение ионов с различным числом зарядов

Движение ионов в электрическом поле. Числа переноса

Диффузия, вязкость и числа переноса ионов в растворах электролитов

Зависимость размеров атомов и ионов от координационных чисел Структурный тип перовскита

Изменение чисел переноса ионов в мембранах

Измерение числа переноса ионов фиг

Интерпретация массовых чисел осколочных ионов

Ионные радиусы влияние координационного числ

Ионы газообразные координационное число

Ионы с нечетным числом электронов

Ионы с четным числом электронов

Ионы с четным числом электронов и ион-радикалы

Кали едкое числа переноса ионов

Комплексные ионы и числа переноса

Комплексные ионы координационные числа

Координатная независимость ионного числа переноса

Координационное число в комплексных ионах и кристаллах

Координационное число для катионов с ионом кислород

Координационное число и ионный радиус

Координационное число иона в растворе

Координационные числа ионов металлов

Координационные числа, комплексных ионов и кристаллов

Корреляция, между координационным числом и отношением ионных радиусов

Кривая чисел переноса ионов фиг

Кристаллические ионные радиус влияние координационного числ

Массовые числа, характеризующие ионов

Металлы, ионы координационные числа и стереохимию комплексов

Металлы, ионы переходные, влияние на координационные числа и стереохимию комплексов

Метод э. д. с при определении коэффициентов активности, чисел переноса, произведений растворимости и констант равновесия ионных реакций

Методы определения чисел переноса и ионных подвижностей

Мостиковые карбониевые ионы с достаточным числом электронов

Определение чисел переноса в ионных проводниках

Определение чисел переноса ионов

Определение чисел переноса ионов К и С1 в растворе хлорида калия

Определение чисел переноса ионов в мембране аналитическим методом

Определение чисел переноса ионов в мембране методом диффузионного потенциала

Определение чисел переноса ионов в растворе

Определение чисел переноса ионов в растворе серной кислоты

Определение чисел переноса ионов в растворе хлористого калия

Определение чисел переноса ионов в смеси электролитов

Определение чисел переноса ионов водорода в водном растворе серной кислоты и сульфата натрия (со свинцовыми электродами)

Переноса числа комплексных ионов

Подвижности ионов и числа переноса. Цепи с переносом

Подвижность и числа гидратации ионов

Работа 10. Определение чисел переноса ионов в растворах едкого натра н нитрата серебра

Работа 9. Определение чисел переноса ионов водорода и сульфата в растворе серной кислоты

Равновесие ионного обмена с одинаковым числом зарядов

Равновесие ионного обмена с различным числом зарядов

Регуляция Na, К-АТФазной активности ионами натрия и каОпределение числа Na-центров Na, К-АТФазы

Скорость движения ионов. Числа переноса

Состояние фильтрующих материалов (в том числе ионитов) на химводоочистках ТЭС

Спектры ионов сходных тремя и большим числом электронов

Теплоемкость иона в растворе числа углеродных атомов

Фрагментация в масс-спектрометрии ионов с четным числом электронов

Числа переноса и подвижности ионов

Числа переноса ионов

Числа переноса ионов Гитторфа

Числа переноса ионов в шлаках

Числа переноса ионов истинные

Числа переноса ионов кажущиеся

Числа переноса ионов концентрационная зависимост

Числа переноса ионов методы определения

Числа переноса ионов нахождение по методу

Числа переноса ионов перемещающейся границы

Числа переноса ионов, определени

Числа переноса щелочных ионов в твердом хлористом калии

Числа сольватации и гидратации ионов

Число иона водорода

Число ионов гидроксила

Число некоторых ионов

Число переноса иона

Экспериментальная часть Определение чисел переноса ионов в растворе серной кислоты

Электропроводность, числа переноса и ионная подвижность

Энтальпии изменения координационного числа иона висмута в кислородном окружении Резницкий

Энтропия сольватации и числа сольватации ионов



© 2025 chem21.info Реклама на сайте