Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Остеоциты

    В отличие от остеоцитов у хондроцитов нет отростков, выступающих из лакун в основное вещество нет здесь и кровеносных сосудов. Обмен веществами между хондроцитами и матриксом происходит путем диффузии. [c.244]

    Как известно, остеоциты образуются из остеобластов при формировании костной ткани. [c.672]

    Образование межклеточного вещества и минерализация костной ткани являются результатом деятельности костеобразующих клеток-остеобластов, которые по мере образования костной ткани замуровываются в межклеточном веществе и становятся остеоцитами. Известно, что костная ткань служит основным депо кальция в организме и активно участвует в кальциевом обмене. Высвобождение кальция достигается путем разрушения (резорбция) костной ткани, а его связывание-путем образования костной ткани. С этим связан процесс постоянной перестройки костной ткани, продолжающийся в течение всей жизни организма. При этом происходят изменения формы кости соответственно изменяющимся механическим нагрузкам. Костная ткань скелета человека практически полностью перестраивается каждые 10 лет. [c.675]


    Между костными пластинками имеются многочисленные лакуны (пространства), содержащие живые костные клетки — остеобласты. Каждая такая клетка способна откладывать кость. По мере своего созревания остеобласты становятся менее активными и в них уменьшается число клеточных органелл. Теперь их называют остеоцитами. Если возникает необходимость в структурных изменениях костей, остеоциты активизируются и быстро превращаются в остеобласты. [c.246]

    Кость представляет собой плотную, твердую соединительную ткань, в основном содержащую обызвествленные элементы. Детали ее строения приведены в разд. 6.4.2. Живые клетки кости (остеоциты) погружены в твердый (тверже, чем в хряще) матрикс. Строение последнего обеспечивает высокую механическую прочность. Минеральная часть матрикса (около 70%) образована фосфатом кальция, который отвечает за сопротивление кости сжатию. Органическая часть (примерно 30%) включает в себя множество коллагеновых волокон, весьма устойчивых к растяжению. Подробнее действующие на кость силы рассмотрены в разд. 18.2.3. Кость можно [c.372]

    Костная ткань является одной из разновидностей соединительной ткани. Ее основные клетки — остеоциты — распределены в твердом межклеточном веществе, содержащем больщое число неорганических солей, главным образом фосфатов кальция. [c.116]

    Хрящ и кость состоят из клеток, погруженных в плотный матрикс. Хрящ с его податливым матриксом способен к интерстициальному росту, тогда как твердая кость может расти только в результате отложения нового материала на ее поверхности. Тем не менее кость подвергается непрерывной перестройке благодаря совместной деятельности остеокластов, разрушающих матрикс, и остеобластов, которые его создают. Некоторые остеобласты замуровываются в матрикс, становятся остеоцитами и участвуют в регуляции обновления костного матрикса. Большинство длинных костей развивается из миниатюрных хрящевых моделей , которые по мере роста служат матрицами для отложения костного вещества в результате совместной активности остеобластов и остеокластов. Сходным образом происходит заживление костных переломов у взрослого организма сначала разрыв заполняется хрящом, который позже замещается костью. Хотя костная ткань, как и большинство других тканей, непрерывно обновляется, этот динамический процесс регулируется так, что глобальная структура остается прежней. Таким образом, благодаря этому и другим механизмом (таким, например, как избирательная межклеточная адгезия) организация тела стойко сохраняется, несмотря на постоянное замещение почти всех его компонентов. [c.203]

    Костные ткани содержат три вида клеток, основными из которых являются ядросодержащие остеоциты (в 1 мм костной ткани содержится примерно 20 — 26 тыс. остеоцитов), в цитоплазме каждого из которых имеется несколько митохондрий. [c.118]


    В КОСТНЫЙ матрикс и обр уют там концентрические кольца остеоцитов. В то время как одни туннели заполняются костью, другие заново прокладываются остеокластами в более старых концентрических системах. Результаты этой непрерывной перестройки хорошо видны на гистологических препаратах компактной кости (рис. 17-48). [c.200]

Рис. 17-48. Микрофотография поперечного среза компактного вещества длинной кости. Видны контуры тоннелей, проделанных остеокластами, а затем заполненных с помощью остеобластов. Срез приготовлен методом шлифования. Плотный матрикс сохранился, но клетки разрушены однако отчетливо видны лакуны и канальцы, которые были заполнены остеоцитами и их отростками. Чередующиеся светлые и темные концентрические кольца соответствуют изменяющейся ориентации волокон коллагена в последовательных слоях костного матрикса, отложенного остеобластами, выстилавшими стенки в разные периоды жизни особи. (Такая картина получается при наблюдении образца между двумя частично скрещенными поляроидными фильтрами.) Обратите внимание на то, что часть более старой системы концентрических костных слоев (внизу справа, с узким центральным каналом) частично резорбирована и заменена более новой системой, в которой центральный канал все еще остается широким - по- Рис. 17-48. <a href="/info/1310580">Микрофотография</a> <a href="/info/1826555">поперечного среза</a> компактного вещества <a href="/info/117410">длинной</a> кости. Видны контуры тоннелей, проделанных остеокластами, а затем заполненных с помощью остеобластов. <a href="/info/1832901">Срез приготовлен</a> <a href="/info/1422612">методом шлифования</a>. <a href="/info/510360">Плотный матрикс</a> сохранился, но клетки разрушены однако отчетливо видны лакуны и канальцы, которые были заполнены остеоцитами и их отростками. Чередующиеся светлые и темные концентрические кольца соответствуют изменяющейся ориентации волокон коллагена в последовательных слоях <a href="/info/509774">костного матрикса</a>, отложенного остеобластами, выстилавшими стенки в разные периоды жизни особи. (Такая картина получается при наблюдении <a href="/info/506804">образца</a> между двумя частично скрещенными <a href="/info/1333442">поляроидными фильтрами</a>.) Обратите внимание на то, что часть более старой системы концентрических костных слоев (внизу справа, с узким центральным каналом) частично резорбирована и заменена более новой <a href="/info/2716">системой</a>, в которой центральный канал все еще остается широким - по-
    Кость-ткань более сложная, чем хрящ. Костный матрикс секретируют остеобласты, которые лежат на поверхности существующего матрикса и наслаивают на него новый костный материал (рис. 16-47). Некоторые остеобласты остаются свободными на поверхности, в то время как другие постепенно погружаются в продукт своей собственной секреции. Этот свежеизготовленный материал (состоящий главным образом из коллагена) называется остеоидом. Он быстро превращается в плотный костный матрикс в результате отложения кристаллов фосфата кальция (точнее, гидроксиапатита). Специфический костный белок остеотютн, который прочно связывается с коллагеном и с гидроксиапатитом, по-видимому, определяет места роста кристаллов и прикрепления их к органическому матриксу. Оказавшись заключенной в твердый матрикс, исходная костеобразующая клетка, называемая теперь остеоцитом, уже не может больше делиться или секретировать в заметных количествах матрикс. Подобно хондроциту, остеоцит занимает небольшую полость, или лакуну, в матриксе, но в отличие от хондроцитов он не отделен от своих собратьев от кавдой лакуны отходят очень узкие канальцы, которые содержат отростки лежащего в лакуне остеоцита, позволяющие ему устанавливать связи типа щелевого контакта с соседними остеоцитами. Хотя сети остеоцитов [c.176]

    В этом процессе много непонятного. Не известно, в частности, что определяет судьбу матрикса на данной костной поверхности-будет он достраиваться остеобластами или разрушаться остеокластами Кости обладают поразительной способностью перестраивать свою структуру таким образом, чтобы приспособиться к испьггываемым нагрузкам. Из этого следует, что локальные механические напряжения каким-то образом управляют образованием и разрушением матрикса. Согласно одной теории, эти напряжения влияют на клетки, создавая локальные электрические поля, к которым клегки чувствительны. В создании такого эффекта в матриксе могли бы участвовать коллагеновые волокна, поскольку они являются пьезоэлектриками, т.е. приобретают электрический заряд при механических воздействиях. Каков бы ни был этот механизм, весьма вероятно, что каким-то образом в нем участвуют и остеоциты там, где они погибли (например, в результате прекращения кровоснабженияХ костный матрикс быстро разрушается. [c.177]

    Остеокласты способны проделывать глубокие ходы в материале компактной кости (рис. 16-49), образуя полости, в которые затем проникают другие клетки. По оси такого туннеля прорастают кровеносные капилляры, а стеушл его покрываются слоем остеобластов. Остеобласты откладывают концентрическими слоями новую кость, которая постепеиио заполняет полость, оставляя лишь узкий канал вокруг нового кровеносного сосуда. Многие остеобласты оказываются замурованными в костный матрикс и образуют там концентрические кольца остеоцитов. В то время как одни туннели заполняются костью, другие заново прокладываются остеокластами в более старых концентрических системах. Результаты этой непрерывной перестройки хорошо видны на гистологических препаратах компактной кости (рис. 16-50). [c.177]

    И хрящ, и кость состоят из клеток, погруженных в плотный матрикс. Хрящ с его податливым матриксом способен к интерстициальному росту, тогда как твердая кость может расти только в результате отложения нового материала на поверхности. Тем не менее кость подвергается непрерывной перестройке благодаря совместной деятельности остеокластов (специализированных макрофагов), разрушающих матрикс, и остеобластов, которые его создают. Некоторые остеобласты замуровываются в матрикс, становятся остеоцитами и участвуют в регуляции обновления костного матрикса. Большинство длинных костей развивается из миниатюрных хрящевых моделей , которые по мере роста служат матрицами для отложения костного вещества в результате совместной активности остеобластов и остеокластов. Сходным образом происходит заживление перелома кости у взрослого организма сначала разрыв заполняется хрящом, который позже замещаежя костью. [c.180]


    Допустим, выход чистой ДНК при выделении равен ц = 33% от исходного количества ДНК в остеоцитах, содержание остеоцитов в компактном веществе костной ткани — С = 20000-26000 кл/мм . Сер = 23000 кл/мм , относительная плотность костной ткани ротп = 1.99 г/см = 1,99 мг/мм . [c.79]

    Костная и хрящевая ткани. Сформировавшиеся костная и хрящевая ткани у взрослых и старых организмов обладают сравнительно высокой радиорезистентностью, не способны к дальнейшим превращениям н могут быть отнесены к стабильным тканям. Однако в период роста кости и хрящи весьма чувствительны к действию ионизирующей радиации. Чувствительность тканей неодинакова в различных их частях и зависит от стадии развития. При острой лучевой болезни обнаруживается понижение количества остеобластов, анормальное набухание хрящевых клеток, являющееся первым признаком дегенерации в зоне первичного обызвествления. Уже спустя несколько дней после облучения животных в зоне окостенения появляется начальная избыточная гипертрофия хрящевых клеток, они содержат вакуоли, в них видны пикнотические ядра. Спустя неделю происходит полное разделение между хрящохм и губчатой костью, в пластинках губчатой кости образуются мертвые остеоциты, исчезают остеобласты. Обычно через две недели после облучения столбики клеток и межклеточные мостики нарушаются, эпифиз утончается и механизм роста нарушается рост в длину кости временно приостанавливается. В случае выживания животных при острой лучевой болезни восстановление костно-хрящевых структурных нарушени1Г может завершиться спустя два месяца после облучения. Характерная особенность лучевых нарушений костной ткани — это отсутствие заметной зоны демаркации между нормальной и облученной частями. Однако в костях облученных животных могут появляться и некротические участки. В результате плохого кровоснабжения и незначительного количества клеток в ткани облученная кость быстрее подвергается инфицированию, чем нормальная, поддается переломам, заживления которых могут значительно задерживаться по сравнению с необлученной. Подавление пост-травматической регенерации костной ткани сохраняется обычно в течение многих месяцев после облучения животных. [c.202]

    Б. Влияние ПТГ на кости. ПТГ проявляет множественные эффекты на костную ткань, влияя, по-видимому, на разные типы ее клеток. Суммарный эффект ПТГ—деструкция кости, сопровождающаяся высвобождением кальция, фосфора и элементов органического матрикса, в том числе продуктов распада коллагена. Клетками, ответственными за этот процесс, могут быть остеокласты, относительно которых доказано, что они разрушают кость при хронической стимуляции посредством ПТГ, либо остеоциты, которые тоже способны резорбировать кость. Возможно, ПТГ стимулирует дифференци-ровку клеток-предшественников и их превращение в клетки, резорбирующие кость. В низких концентрациях, вероятно соответствующих физиологическим, ПТГ оказывает анаболический эффект и ответствен за перестройку кости. При воздействии этих концентраций гормона наблюдается увеличение числа остеобластов, возрастание активности щелочной фосфатазы, свидетельствующее о формировании новой костной ткани, и повышенное включение радиоактивной серы (в виде сульфата) в хрящ. В действии ПТГ на кость пермиссивную роль может играть кальцитриол. [c.198]

    Таким образом, в органных культурах кусочков костного мозга из трубчатых костей взрослых мышей кроветворение продолжается недолго (в течение 5 дней). В последующие сроки в условиях органных культур формируются фосфатазоположительные очаги, состоящие из ориениро-ванных, компактно расположенных клеток, имеющих сходство с остеобластами, В отдельных участках происходит образование основного вещества. Однако типичных для костной ткани структур в виде костных балок с замурованными остеоцитами и отложения характерного основного вещества в культурах обнаружено не было. Эти морфологические картины могут указывать на то, что в культурах костного мозга мышей образуется остеогенная ткаиь, не дающая, однако, завершенного остеогенеза. [c.48]

    Последовательные стадии костеобразования в культуре. При эксплантации в органные культуры фрагментов костно го мозга, выделенных из медуллярной полости бедренной кости мыши, за 20—25 сут культивирования может происходит полная дифференцировка стромальной ткани — образование кости. Новообразованная кость рас -лагается в виде плоской пластины, которая занимает центральные участки эксплантата и часть примыкающей к ним зоны роста. Морфологическое изучение культур последовательных сроков позволяет судить о динамике костеобразования in vitro. В культурах костного мозга мыши очаги остеогенеза появляются на 16—20-е сутки в центре эксплантата и участках с наибольшей клеточной плотностью. Здесь обнаруживаются тонкие костные балки, ориентированные вдоль мил-липорового фильтра. Лежащие на их поверхности остеобласты пр -являют высокую активность щелочной фосфатазы и имеют морфологию, характерную для остеобластов in situ. По мере культивирования происходит разрастание костной ткани (утолщение кости) и к 26—30-м суткам слияние костных балок в единую пластину с замурованными остеоцитами. В присутствии глицерофосфата происходит минерализация основного вещества новообразованной костной ткани. [c.280]

Рис. 17 5 Эта схеш показывает, как остеобшсты, выстилающие поверхность кости, секретируют органический матрикс кости (остеоид) и превращаются в остеоциты по мере погружения в этот штрикс. Образующийся штрикс вскоре обызвествляется. Полагают, что сами остеобласты ведут свое происхождение от остеогенных стволовых клеток - близких родственников фибробластов. Рис. 17 5 Эта схеш показывает, как остеобшсты, выстилающие поверхность кости, секретируют органический <a href="/info/566929">матрикс</a> кости (<a href="/info/510282">остеоид</a>) и превращаются в остеоциты по мере погружения в этот штрикс. Образующийся штрикс вскоре обызвествляется. Полагают, что сами остеобласты ведут свое происхождение от остеогенных стволовых клеток - близких родственников фибробластов.

Смотреть страницы где упоминается термин Остеоциты: [c.119]    [c.463]    [c.417]    [c.548]    [c.199]    [c.201]    [c.127]    [c.74]    [c.280]    [c.199]    [c.199]   
Биохимия Том 3 (1980) -- [ c.373 , c.374 ]

Молекулярная биология клетки Том5 (1987) -- [ c.176 , c.177 ]

Биология Том3 Изд3 (2004) -- [ c.246 , c.247 , c.372 ]

Полимеры медико-биологического назначения (2006) -- [ c.116 ]




ПОИСК







© 2025 chem21.info Реклама на сайте