Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поперечный срез

Рис. 2. Схема продольного разреза участка миофибриллы (1 -диск А, 2-диск Т, 3-пластинка 2, 4-саркомер) внгоу показана схема поперечного среза миофибриллы (5-только нити миознна, 6-нитн актина и миозина, 7-только ннти актина). Рис. 2. <a href="/info/923526">Схема продольного</a> разреза участка миофибриллы (1 -диск А, 2-диск Т, 3-пластинка 2, 4-саркомер) внгоу показана <a href="/info/95955">схема поперечного</a> среза миофибриллы (5-только нити миознна, 6-нитн актина и миозина, 7-только ннти актина).

Рис. 2. Схема поперечного среза корня. Рис. 2. <a href="/info/95955">Схема поперечного</a> среза корня.
    Дальнейшее исследование полученных поперечных срезов показало, что расплав может проникать под слой твердого полимера и время от времени полностью охватывать его часто сплошность твер -дого слоя нарушается, и расплав заполняет образовавшиеся полости (см., например, разд. 15.5). Такое нарушение сплошности твердого слоя, как оказалось, происходит в конусной части червяка п является причиной колебаний производительности экструдера (т. е. приводит к появлению флуктуаций температуры, давления и расхода во времени), а также причиной появления в экструдате некоторого количества воздушных пузырей. [c.430]

Рис. Й.10. Поперечный срез листа кукурузы, демонстрирующий характерную структуру растений С4-типа. Рис. Й.10. <a href="/info/713810">Поперечный срез</a> <a href="/info/1302688">листа кукурузы</a>, демонстрирующий <a href="/info/1618772">характерную структуру</a> растений С4-типа.
    Наблюдение и фотографирование поперечных срезов проводили в белом отраженном свете с помощью поляризационного микроскопа с пристроенным к нему осветителем отраженного света ОИ-12 в параллельных поляроидах. При облучении ленты ультрафиолетовым светом (X = 365 нм) [c.21]

    Микроскопические исследование поперечных срезов образцов (индикаторный метод). Проверка пористости материалов [c.36]

    Рпс. 12.8. Схема поперечного среза  [c.430]

    Заканчивая анализ поперечных срезов (рис. 12.8), рассмотрим другие детали физических процессов, протекающих в винтовом канале червяка. Относительное движение поверхности цилиндра, направленное поперек винтового канала, увлекает за собой расплав и перемещает его к заполненному расплавом участку канала,находящемуся у толкающей стенки, одновременно создавая поперечный градиент давления и циркуляционное течение. Это гидродинамическое давление несомненно способствует дроблению твердой пробки полимера, расположенной у передней стенки винтового канала. А так как расплавленный полимер непрерывно удаляется из пленки расплава за счет относительного движения цилиндра, то твердый слой должен начать двигаться по направлению к поверхности цилиндра. В то же время нерасплавленный полимер скользит по витку вследствие этого ширина пробки, движущейся по каналу, непрерывно уменьшается до тех пор, пока пробка, наконец, полностью не исчезнет. С другой стороны, в данном сечении винтового канала размеры пробки остаются во времени неизменными. Таким образом, налицо все элементы установившегося процесса плавления, сопровождающегося удалением расплава вследствие вынужденного течения (см. разд. 9.8). Более того, подобный механизм плавления может существовать только в тонкой пленке расплава у поверхности цилиндра. Учитывая также существенное различие между интенсивностью плавления без и с удалением образовавшегося расплава, мы приходим к выводу, что плавление на сердечнике червяка (даже при проникновении расплава под твердый слой) так же, как взаимодействие между слоями расплав- [c.430]


    Метод микрошлифа заключается в измерении толщины покрытия на поперечном срезе образца с помощью микроскопа. Это один из самых точных методов, но из-за своей трудоемкости не может быть рекомендован для текущего цехового контроля его следует рассматривать как арбитражный. Кроме того, он может быть использован при изготовлении эталонов, для проверки равномерности, осаждения покрытия на определенном участке детали, а также для изучения структуры гальванического осадка. [c.237]

    МПа, стойкость к многократному изгибу — не менее 20 двойных перегибов. В проекции поперечного среза должны отсутствовать пузыри. [c.109]

    При наблюдении в микроскоп поперечных срезов на общем темносинем фоне четко выделяются частицы ржавчины, окрашенные в буровато-красный цвет. [c.15]

    Для выявления причины некоторого потемнения нижнего слоя пленки в сравнении с верхним при помощи биологического микротома были сделаны продольные срезы образцов ленты, снятой с трубопровода, и затем просмотрены в микроскоп в проходящем свете в параллельных поляроидах. Оказалось, что зто потемнение распространяется преимущественно в той части основы ленты, которая соприкасается с битумным праймером. Можно предположить, что основной причиной потемнения пленки в этом месте является диффузионное проникновение в нее молекул битумного праймера. На поперечных срезах при просмотре в отраженном свете этого явления не обнаружили. [c.17]

    В Со — Р-покрытиях обнаруживается преимущественная ориентация кристаллов текстура и степень совершенства которой зависят от условий их получения и содержания в них фосфора При поперечном срезе покрытий наблюдают четкую столбчатую струк туру перпендикулярную поверхности основы, а также слоистость, характерную и для N1—Р покрытий Можно предполагать, что слоистость вызвана колебаниями в распределении фосфора по толщине покрытия которые связаны с периодическим изменением соотношения скоростей реакции восстановления кобальта и фосфора 1см уравнения (12) и (13)] [c.57]

    Непосредственно толщину черной углеводородной пленки в водной среде можно определить из электронно-микроскопических фотографий ее поперечного среза 12, 82—84]. С этой целью пленку формируют в среде с тяжелыми металлами, затем перемещают ее в желатиновую капсулу, где после соответствующей обработки фиксируют и замораживают. Далее с помощью ультрамикротома получают поперечные срезы пленки и исследуют их под электронным микроскопом. Наблюдаемые в электронном микроскопе картинки поперечного среза пленки представляют обычно трехслойную структуру, состоящую из двух темных линий, проявляющих полярные области пленки, где адсорбируются тяжелые металлы, и более светлого участка между ними, относящегося к углеводородной части пленки. [c.76]

    Для определения состава черных углеводородных пленок, полученных из меченых препаратов, Хенн и Томпсон [951 предложили использовать их поперечные срезы, приготовляемые для исследования под электронным микроскопом, но, как указывалось ранее, при получении этих срезов структура пленок может претерпевать существенные изменения. [c.77]

    Электронно микроскопический снимок поперечного среза Толщина, А [c.168]

    Волокна, сформованные из раствора полипропилена, в отличие от волокон, полученных из расплава, неоднородны по поперечному срезу, что улучшает сцепляемость волокна при последующей текстильной переработке. [c.237]

    Профилированные полиэфирные волокна — волокна с фигурным поперечным срезом, обладают большим блеском, лучшей кроющей способностью, непрозрачностью. При сложных профилях удается достигнуть протяженных отражательных рефлексов. [c.240]

    В несколько стеклянных банок налейте воды и подкрасьте ее несколькими каплями чернил. Стебли или ветки разных растений срежьте острым ножом (предпочтительнее под водой) и поставьте в банки. Мало-помалу подкрашенная вода заполнит все сосуды растения, поднимется по капиллярам. Обнаружить ее движение легко - изменится цвет прожилок на листьях. Если сделать на каждой ветке несколько поперечных срезов, то вы увидите, как расположены капилляры (советуем взять для этой цели лупу посильнее). [c.71]

    Преимущественное расположение лигнина в срединной пластинке и первичной клеточной стенке спелой древесины хвойных и лиственных пород было подтверждено измерением поглощения ультрафиолетового света с длиной волны 280 ммк [4] в поперечных срезах одревесневших клеточных стенок. Этим методом было показано, что в срединной пластинке клеточной стенки содержание лигнина достигает 60—90%, а на границе полости только 10—20%. [c.290]

    Следующий за ним слой 82 образован параллельно расположенными микрофибриллами целлюлозы, идущими почти параллельно оси волокна в виде крупной спирали, имеющей угол наклона к оси волокна от 10 до 20 . Между слоями 81 и 82 имеется резко выраженный переход. В этом месте целлюлозная матрица имеет рыхлое строение и при поперечных срезах тупым ножом часто [c.319]


    Как уже указывалось выше, с помощью сорбции ультрафиолетовых лучей на тонких поперечных срезах трахеид хвойных и либриформа лиственных пород было установлено [42], что ксилоуронид должен располагаться в наружных участках этих клеток. Указывалось также, что этот метод является качественным, так как истинная плотность вещества стенок по слоям неизвестна. [c.324]

    На выходной части первой ступени редуктора 12 находится угловая приставка 7, на вертикальный вал 1 которой насажен горизонтальный диск 8 с закрепленными на нем ножами поперечного среза. Приставка 7 устанавливается только при резке сырья на кубики. [c.441]

    Вытяжка полимерного волокна снижает при стабилизации энергию активации циклизации структуры. Это позволяет сократить примерно в 2 раза время стабилизации и повысить усал-ку волокна в интервале 100-200 С. Последнее косвенно свидетельствует об увеличении степени циклизации волокна. Замедление повышения прочности ПАН-волокна наступает при вытяжке примерно 60%. Увеличение прочности У В при высоких значениях вытяжки исходного волокна связано в основном с уменьшением его диаметра и более гомогенной стр>хтурой. Скорость реакций окисления контролируется диффузией кислорода через ПАН-волокно. Завершение процесса может быть оценено по микроскопическому исследованию поперечного среза, а также по окончанию выделения цианистого водорода. В целях интенсификации окисления представляется интересным предварительное (ниже 70 С) озонирование и последующее повышение температуры окисления нагретым до 250 С воздухом. Оптимальные режимы окисления сочетают изотермический нагрев при 230 С в течение 30 мин и далее подъем температуры со скоростью 6-53°/ч в течение 90 мин до максимальной температуры в интервале от 230 до 310 С [9-75]. Неизотермический нагрев заметно повышает прочность на растяжение. [c.570]

    На подготовленных образцах с помощью специального штампа делают поперечные срезы. Глубину проникновения средь[ на срезе определяют окулярмикрометром или отсчетным микроскопом типа ШМ-1 при освещении ультрафиолетовыми лучами от осветителя типа ОИ-18 или СИ-17 со светофильтрами УФС-3 или ФС-1. Если на трех и более срезах образцов первоначальная красная окраска за несколько часов изменилась на интенсивно-синюю по всей толыщне среза, это означает, что резина является проницаемой. При изменении окраски только в поверхностном слое проводят повторные испытания с увеличением продолжительности воздействия агрессивной [c.138]

    Наиболее распространены плотные осадки из среднекристал-лического гипса с включением значительного количества мелких призматических кристаллов гипса, ангидрита, сульфата магния и лримеси твердых и жидких углеводородов. При поперечном срезе [c.170]

    Исследовали продольные и поперечные срезы изоляционных покрытий, находившихся в течение длительного времени в различных почвенноклиматических районах СССР. Наблюдение и фотографирование объектов производили в отраженном свете в скрещенных поляроидах с помощью поляризационного микроскопа с пристроенным к нему осветителем отраженного света ОИ-12. На поперечном срезе (покрытие разрезано по плоскости, перпендикулярной к поверхности трубы) видно внедрение ингредиентов клея в поверхностный слой основы ленты (рис. 6), находившейся в течение 6 лет в качестве покрытия в черноземной почве в районе г. Краснодара. Аналогичная картина наблюдается и на образцах, находившихся в других грунтовых условиях. [c.14]

    В сравнительно редких случаях отмечали появление трещин на поверхности покрытия со стороны клеевого слоя (обращенной к поверхности трубы). Однако, как правило, они не прогрессировали во времени и максимальная пх глубина не превышала 30—40 мкм. По-видимому, в данном случае почвенная влага с растворенными в ней веществами выполняет роль поверхностно-активной среды, облегчая разрушение материала только с наружной поверхности. Кроме того, отдельные составляющие клеевого слоя, мигрируя в поверхностный слой основы покрытия, могут оказывать в некотором роде пластифицирующее действие, затрудняя образование н рост трещин снизу покрытия. При рассмотрении в вдйк-роскоп в поляризованном свете поперечных срезов образцов наблюдалось внедрение составляющих клея в основу пленки (рис. 47). Не исключено также положительное влияние фактора прилипаемости на прочность покрытия в области, примыкающей к поверхности трубы. В некоторых случаях на поверхности наблюдали сеть мелких трещин, беспорядочно ориентированных во всех направлениях, глубиной, не превышающей 20— 30 мкм. Через определенное время испытанпя в покрытии появляются сквозные трещины (рис. 48), максимальная ширина раскрытия которых достигала 100—150 мкм. Появление сквозных трещин сопровождается резким увеличением расхода катодного тока, что приблизительно совпадает по времени с достижением материалом хрупкого состояния. [c.118]

    Микрофотографии шлифов поперечного среза покрытий дают четкую столбчатую структуру с характерной слоистостью. В соответствии со структурно-фазовыми превращениями находятся и изменения свойств покрытий Это наглядно видно на кривых зависимости твердости от температуры отжига. Повышение твердости покрытий после отжига в области температур 200—400 С и 500—600 °С связано с выде1ение.м фазы С02Р и Соз У соответственно Изменение магнитных характеристик покрытий также связано с указанными выше структурно-фазовыми превращениями (рис 25) [c.70]

    Содержание цинка в покрытиях увеличивается линейно с повышением концентрации хлористого цинка в растворе находясь в пределах 0—4 (массовые доли %), при этом содержание фосфора остается постоянным ( 4 массовые доли %) Полученные покрытия были блестящими и обнаруживали хорошую адгезию с металлом основы Микроструктура поперечного среза Со — 2п — Р покрытия обнаруживает слоистость Твердость покрытий состааляет 3500— 4000 МПа [c.70]

    Первые исследования свойств устойчивых черных липидных пленок в водной среде явились хорошим экспериментальным подтверждением гипотезы Даниэлли и Дэвсона согласно которой бимолекулярный липидный слой служит основным структурным элементом биологических мембран. Уже первое сравнение свойств черных пленок и биологических мембран показало их большое сходство. Так, черные углеводородные нленки и биологические мембраны дают подобные электронно-микроскопические фотографии при наблюдении их поперечных срезов (трехслойная структура), имеют близкие значения толш ин, удельной электрической емкости, водной проницаемости и т. д. [c.167]

    Изменения строения нервных волокон ствола начинают проявляться при разве, Тепня.х яда 1 100. Наиболее выраженные повреждения всех структурных элементов нервного ствола наблюдаются при максимальной концентрации яда (1 10), На рис. 6 показаны участки поперечных срезов нервного ствола лягушки в контро- [c.24]

    Когда была сделана попытка отремонтировать эти буи для повторного использования путем удаления всех следов коррозии перед покраской, было обнаружено, что коррозия распространилась вдоль поверхности раздела плакирующего и основного сплавов на значительные расстояния от кромок пузырей и дырок, возникших в местах разрушения плакирующего сплава. Полированные поперечные срезы, произведенные в буе через области, подвергшиеся коррозии, подтвердили наблюдения, сделанные во время операции удаления следов коррозии. Металлографические исследования показали, что пути распространения коррозии находились в действительности целиком в плакирующем сплаве. Вспучивание алюминиевых сплавов типа Al lad очень необычно. Коррозионное вспучивание и быстрое растворение плакировочных пленок не наблюдалось ранее при их применении в поверхностных морских водах. Из-за этого необычного вспучивания одна из сфер была послана в исследовательские лаборатории Американской алюминиевой компании, где были проведены исследования для определения механизма такого коррозионного поведения. Вей [15] показал, что имела место преимущественная диффузия цинка по сравнению с медью из основного сплава в зону контакта слоев. Высокая концентрация цинка и низкая — меди превратили эту зону в анодную как по отношению к плакирующе- [c.390]

Рис. 10.2-16. ОЭС Анализ тонкопленочной структуры микроэлектронного устройства методом ОЭС и поперечного среза этой структуры методом ПЭМ. а—ПЭМ-фотография системы слоев до отжига, на которой видна последовательность слоев сверху вниз) приблизительно 20 слоев Та и 20 слоев 81 толщиной 5 нм каждый, полученные распылением, слой поликристаллического кремния 275 нм толщиной, слой 8102 толщиной около 50 нм, кремниевая подложка б — ПЭМ-фотография образца после отжига при 900° С, на которой видны образовавшиеся новые слои (сверху вниз) поликристаллический силицид тантала толщиной около 200 нм, слой поликристаллического кремния толщиной около 250 нм, слой 810г толщиной около 50 нм, кремниевая подложка в — количественное распределение по глубине, полученное методом ЭОС, кислорода, кремния и тантала, свидетельствующее о формировании слоя оксида кремния на поверхности стехиометрического Та812 [10.2-4]. Рис. 10.2-16. ОЭС <a href="/info/140658">Анализ тонкопленочной структуры</a> <a href="/info/577705">микроэлектронного устройства</a> методом ОЭС и <a href="/info/713810">поперечного среза</a> этой <a href="/info/24750">структуры методом</a> ПЭМ. а—ПЭМ-фотография <a href="/info/330630">системы слоев</a> до отжига, на которой видна <a href="/info/957907">последовательность слоев</a> <a href="/info/1721851">сверху вниз</a>) приблизительно 20 слоев Та и 20 слоев 81 толщиной 5 нм каждый, <a href="/info/73484">полученные распылением</a>, <a href="/info/386289">слой поликристаллического</a> кремния 275 нм толщиной, слой 8102 толщиной около 50 нм, <a href="/info/880129">кремниевая подложка</a> б — ПЭМ-фотография образца <a href="/info/677295">после отжига</a> при 900° С, на которой видны образовавшиеся новые слои (<a href="/info/1721851">сверху вниз</a>) поликристаллический <a href="/info/999585">силицид тантала</a> толщиной около 200 нм, <a href="/info/386289">слой поликристаллического</a> кремния толщиной около 250 нм, слой 810г толщиной около 50 нм, <a href="/info/880129">кремниевая подложка</a> в — <a href="/info/572850">количественное распределение</a> по глубине, <a href="/info/3912">полученное методом</a> ЭОС, кислорода, кремния и тантала, свидетельствующее о <a href="/info/56193">формировании слоя</a> <a href="/info/144210">оксида кремния</a> на поверхности стехиометрического Та812 [10.2-4].
    В другой серии исследований [6] анализ древесины сосны по годовым кольцам проводился более подробно, с количественным хроматографическим определением всех моносахаридов, входящих в состав легко- и трудногидролизуемых гемицеллюлоз. Исследованию подвергалась древесина сосны (Pinus silvestris) в возрасте 111 лет при высоте 26 м. Пробы отбирались на поперечном срезе, сделанном на высоте 1,3 лг от основания. Диаметр ствола в этом месте был равен 45 см без коры. Полученные при этом данные приведены в табл. 62. [c.304]

    Эта операция осуществлялась на одревесневших срезах, предварительно освобожденных от лигнина с помощью хлорита натрия в уксуснокислой среде. Затем срезы были обработаны п-фенилаз- бензоилхлоридом с целью этерификации полисахаридов. Ярко окрашенные в оранжево-красный цвет срезы после набухания в пиридине фотометрировались. Подвергая такой обработке срезы, со стоящие из холоцеллюлозы, до и после удаления гемицеллюлоз, удалось установить, что основная масса гемицеллюлоз в древесине ели и березы сосредоточена в наружных слоях вторичной стенки. Так, при экстракции среза еловой холоцеллюлозы 16%-ным едким натром было установлено, что из наружных слоев клетки извлекается до 60—80%, из средины клеточной стенки около 50% и из слоя Зз только 167о растворимых в щелочи гемицеллюлоз от общего количества полисахаридов. Аналогичная картина наблюдалась и для поперечных срезов либриформа из древесины березы. [c.320]

    Исследование гидролизатов легко- и трудногидролизуемых полисахаридов отдельных тканей древесины березы, таких, как либриформ, сосуды, сердцевинные лучи и сердцевинные повторения, показало различие в углеводном составе этих тканей. Для этого исследования были оделаны с помощью микротома поперечные срезы древесины березы (Betula verru osa) из годичных слоев 15— 20-летнего возраста. [c.326]

    РИС. 4-21. А. Схематическое изображение структуры типичного саркомера скелетной-мышцы. Приведенный продольный разрез соответствует электронно-микроскопической фотографии рис. 4-22. Б. Схема, иллюстрирующая расположение толстых и тонких нитей в поперечнополосатой мышце (поперечное сечение). В. Слева электронно-микроскопическая фотография поперечного среза мышцы кролика, обработанной глицерином. В центре кружка можно видеть, что шесть тонких иитей расположены по вершинам шестиугольника вокруг толстой нити. Остальные шесть толстых нитей расположены в вершинах шестиугольника большего размера. Справа поперечный срез-гладкого мышечного волокна. Толстые н тонкие нити расположены неупорядоченно. Видны нити промежуточной толщины, образующие скопления в виде плотных телец -(1), наличие которых является характерной особенностью гладких мышц. [c.319]

    При изучении анатомического строения корня эхииацеи пурпурной на поперечном срезе видеп топкий слой пробки. Первичная кора состоит из крупных овальных или округлых клеток паренхимы. В первичной коре видны вместилища с эфирным маслом красновато-оранжевого цвета изредка встречаются одиночные каменистые клетки. Клетки эндодермы коры квадратные или закругленные. Во вторичной коре заметны участки луба, состоящие из мелких клеток, расположенных отдельными группами. Камбиальная зона хорошо выражена. В древесине сосуды крупные, расположены веретенообразно. Склеренхима занимает большую часть древесины корня. В древесине встречаются сосуды, содержащие смолу желтовато- или красновато-оранжевого цвета, расиоложеиые одиночно или группами (Рис. 2,3). [c.64]


Смотреть страницы где упоминается термин Поперечный срез: [c.156]    [c.238]    [c.15]    [c.25]    [c.378]    [c.82]    [c.120]    [c.370]    [c.401]    [c.36]    [c.320]    [c.65]   
Смотреть главы в:

Производство вискозных волокон -> Поперечный срез




ПОИСК







© 2025 chem21.info Реклама на сайте