Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеноструктурный анализ ферментов ограничения

    Третья причина развития теоретической энзимологии за последние десятилетия главным образом в терминологическом и популяризационном планах связана с рядом ограничений самого рентгеноструктурного анализа. Во-первых, несмотря на уникальность и ценность этого метода как практически единственного источника информации о трехмерных структурах белков, получаемые им результаты касаются только статического состояния фермента и, следовательно, прямо не отвечают на вопрос о динамических конформационных и электронных характеристиках активной конформации, что представляет первостепенный интерес в изучении биокаталитического процесса. Выявление потенциальных возможностей объектов исследования и предсказание их поведения - прерогатива теоретического подхода. Во-вторых, рентгеновский метод позволяет расшифровать трехмерные структуры комплексов ферментов, но комплексов не с субстратами, а с ингибиторами. Могут быть получены структурные данные о целой серии ингибиторных комплексов одного фермента, которые в той или иной мере (но всегда неявной) соответствуют химическим элементарным стадиям каталитического акта. Однако в таком наборе все ингибиторы отличаются по своему химическому и пространственному строению как от истинного субстрата, так и друг от друга. Не зная продуктивной ориентации субстрата в активном центре, а также актуальных для катализа фермент-субстратных взаимодействий и обусловленных ими конформационных перестроек и имея дело со сложной системой, трудно составить полное и объективное представление о причинах спонтанного протекания каталитической реакции. Предпринимаемые здесь попытки представляют собой стремление воссоздать механизм каталитического акта, располагая структурными данными, одна часть которых отвечает реальному, исходному состоянию фермента, а другая, большая часть, фермент-ингибиторным комплексам, которые в чем-то (в чем именно, неизвестно) отличаются от промежуточных продуктивных комплексов истинного многостадийного процесса. [c.106]


    Успехи в изучении етруктуры белков, н в частности лизоцима, в кристаллическом состоянии методами рентгеноструктурного анализа неизбежно повлекли за собой вопрос о том, насколько третичная структура фермента, и в особенности его активно1 о це1гтра, в кристалле близка к таковой в растворе. С одной стороны, можно было бы ожидать близкое сходство, если не идентичность, между структурами фермента в данных двух физических состояниях, поскольку по меньшей мере одна треть объема для большинства кристаллических белков занята водой [35], причем по данным ЯМР эта вода имеет жидкую структуру [36]. С другой стороны, определенные ограничения в подвижности фермента в кристалле, а также взаимные стерические влияния молекулы в кристаллической решетке (возможно, различные для разных полиморфных модификаций кристаллического фермента) могут, вообще говоря, сказываться на топографии активного центра, доступности его по отношению к молекулам субстрата и эффекторов и в целом на механизме ферментативного катализа. [c.155]

    Ионы металлов в белках и ферментах могут специфически замещать друг друга в рамках строгих ограничений, накладываемых ионными радиусами и требованиями стереохимии координации. К сожалению, структуры металлзамещенных белковых производных определены методами рентгеноструктурного анализа в целом хуже, чем соответствующие структуры нативных белков. Со структурной точки зрения часто остается непонятным, каким образом центры белков, координирующих ионы металла, могут связывать катионы с другим ионным радиусом и координирующей способностью, не вызывая при этом значительных искажений струк- [c.28]

    Конформация полипептида в растворе частично определяется прямым взаимодействием пептидных групп друг с другом. То обстоятельство, что синтетические по-липептидй имеют высокорегулярную, кристаллическую структуру, тогда как многие другие- полимеры аморфны, т. е. обладают структурой беспорядочного клубка, в принципе свидетельствует о наличии некой естественной конформации для полипептидов. Результаты тщательной оценки длины связей и валентных углов, основанной на размерах, установленных для планарных пептидных связей в кристаллах небольших пептидов, существенно ограничили число возможных моделей конформации полипептидов. Дальнейшие ограничения в выборе возможной конформации были связаны с тем, что, согласно исходным предположениям, каждая карбонильная и каждая амидная группа пептида участвует в образовании водородной связи и что конформация полипептида должна соответствовать минимальной энергии вращения вокруг одинарной связи. Этим требованиям для пептидов, в которых имеются внутримолекулярные связи, отвечала правая спираль, содержащая 3,6 аминокислотных остатка на один виток (так называемая а-спираль) [1].. Существование спиральных структур предсказанных размеров в синтетических полипептидах было подтверждено с помощью самых различных физических методов, в том числе и методом рентгеноструктурного анализа. Такая а-спираль, в которой каждая пептидная группа соединена водородной связью с третьей от нее пептидной группой, считается наиболее вероятной моделью отдельных участков остова молекулы глобулярных белков, к которым относятся и ферменты. Нужно подчеркнуть, однако, что конформация глобулярного белка в целом отличается от простой регулярной а-спиральной структуры из-за наличия, в белке дисульфидных связей и остатков пролина, которые нарушают спиральное строение и изменяют ориентацию цепи, а также из-за взаимодействия боковых цепей, ответственного за третичную структуру. Действительно, рентгеноструктурный анализ с высоким разре- [c.25]



Биохимия Том 3 (1980) -- [ c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ рентгеноструктурный



© 2025 chem21.info Реклама на сайте