Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионы металлов

    Анодное растворение металла с переходом его в раствор в виде простых гидратированных (или в виде комплексных) ионов во многом представляет собой обращение процесса катодного выделения металлов. Анодный процесс начинается с разрушения кристаллической решетки и заканчивается образованием ионов металла в растворе вместо стадий формирования кристаллической решетки появляются стадии ее разрушения, вместо разряда ионов — ионизация атомов металла и т. д. Общую реакцию анодного растворения металла, если образуются простые гидратированные ноны, можно записать в виде уравнения [c.475]


    Наиболее часто встречаются отклонения, связанные с протеканием различных процессов в исследуемых растворах. Как уже упоминалось ранее, поглощение прямо пропорционально числу поглощающих частиц. Однако в результате различных процессов, таких, как гидролиз и сольватация, ионная сила раствора при сохранении постоянства общей массы веществ, число поглощающих частиц данного вида и их энергетическое состояние могут изменяться, что является основной причиной, вызывающей отклонение от закона Бугера — Ламберта — Бера. Известно, например, что многие химические процессы, протекающие в растворах, связаны с концентрацией Н+-ионов. Кроме того, изменение pH раствора приводит к различной степени связанности иона металла в комплексное соединение, к изменению его состава или даже к его разрушению. [c.467]

    Ранее было показано, что при определенном значении налагаемого напряжения на электроды можно практически занершить выделение металла в процессе электролиза. Различные значения потенциалов разложения у разных ионов металлов позволяют при соответствующем выборе налагаемого напряжения определять их в смеси. Однако в процессе электролиза, как было показано ранее, э. д. с. образуемой системы постепенно возрастает, и по мере уменьшения потенциала катода может наступить момент, когда потенциал катода станет настолько низким, что начнется выделение второго компонента смеси. Для того чтобы избежать этого явления, необходимо строго контролировать потенциал катода и поддерживать его значение, отвечающим количественному выделеннк более электроположительного катиона. При этом в конце процесса электролиза ток падает практически до нуля, что и является критерием завершения электролиза данного катиона. Далее, изменяя потенциал электрода до значения, необ.ко-димого для количественного выделения второго, более электроотрицательного компонента, можно осуществить и это определение и т. д. Для проведения электролиза с контролируемым потенциалом служат так называемые потенцио-статы — приборы, поддерживающие строго заданные потенциалы катода или анода. Электролиз с контролируемым потенциалом обеспечивает большую селективность электрогравиметрического метода анализа, позволяет проводить разделение и последовательное определение ионов с близкими потенциалами разло жеиия Метод этот пригоден и для определения весьма малых количеств веществ. [c.439]

    При электролизе комплексных солей концентрации ионов металла несравненно меньше. Убыль их пополняется обычно только за счет диффузии, тогда как основная масса металла в виде комплексных анионов перемещается к аноду. Вследствие этого около тех точек поверхности катода, где происходит выделение кристаллов металла, раствор весьма быстро обедняется ионами металла и катионы начинают разряжаться и у других точек поверхности катода, где их концентрация больше. Таким образом, осаждение происходит равномерно по всему катоду, и осадок получается более ровным и плотным. Поэтому комплексные соединения металлов применяются в электрогравиметрическом анализе очень частя. [c.439]


    Число ОН-мостиков в димере зависит от прочности се язи О — Н в координированной молекуле воды. Очевидно, чем выше заряд иона металла, тем прочнее связь М — Он тем больше ослабляется связь О — Н в координированной молекуле воды. Это приводит к увеличению числа ОН-мостиков и увеличении степени гидролиза. Наиболее типичные формы двухъядерных комплексов в зависи.мости от заряда комплексообразователя приведены в табл. 23. [c.213]

    Hof металла e MeY Ион металла Ион металла  [c.337]

    Если реакция комплексообразования иона металла Ме" с органическим реагентом Ни, обладающим кислотно-основными свойствами, протекает по уравнению  [c.481]

    Очень важно для анализа то, что почти со всеми ионами металлов в различных условиях образуются комплексные соединения [c.337]

    При pH = 7—11, когда индикатор имеет синий цвет, многие ионы металлов образуют комплексы красного цвета, например, такие ионы, как Mg2+, Са2+, ZvP- , d2+, А1 +, Со +, Ni +, Сц2+ и др. Реакции Са + и Mg + с индикатором можно представить уравнением  [c.338]

    Появление на границе металл — раствор потенциала обусловлено преимущественно ионами металла, хотя в общем случае в установлении равновесия участвуют и электроны  [c.29]

    Это уравнение справедливо для любого водного раствора сильной кислоты и сильного основания. Действительно, если к раствору сильной кислоты НА добавить Ь экв сильного основания МОН, то (так как степени диссоциации и кислоты, и основания, и образующейся соли равны единице) величина Ь будет отвечать концентрации ионов металла Ь = см+. Тогда по условию электронейтральности [c.40]

    При абсорбции HjS растворами щелочей химическая реакция приводит к образованию кислого сульфида. Если а — отношение концентрации связанного гидросульфида к концентрации иона металла Мо, то концентрация свободной щелочи будет Мо(1 — о). То же самое справедливо для случая абсорбции растворами амина с общей концентрацией амина ао (вместо Мо). [c.156]

Рис. 16.6. Схема прогрессирующей дегидратации иона металла при вхождении его в кр]1сталлическую решетку осадка Рис. 16.6. Схема прогрессирующей дегидратации иона металла при вхождении его в кр]1сталлическую решетку осадка
    Введение 1 моля ионов металла в раствор через поверхностный скачок потенциала с выигрышем реальной энергии гидратации нона АОг(р). [c.63]

    Предполагая, что в стекле данного сорта сумма активностей нонов металла и водорода постоянна и равна активности ионов металла в исходном стекле  [c.174]

    Ион металла Комплекс Пример] з1 [c.214]

    Невозможность объяснить все кинетические особенности электрохимического выделения металлов с какой-либо одной общей точки зрения заставляет искать новые пути истолкования этих процессов и прибегать к предположениям частного характера. Так, например, существует мнение, что перенапряжение при выделении металлов связано с числом электронов, участвующих в элементарном акте разряда (Гейровский). При этом предполагают, что одноэлектронные реакции протекают практически без торможения. В тех случаях, когда только один электрон участвует в акте разряда (или когда процесс можно разбить на ряд последовательных одноэлектронных стадий), перенапряжение должно быть низким. Если в разряде ионов металла участвуют одновременно два электрона, то следует ожидать появления высокого металлического перенапряжения. Согласно этим представлениям низкое перенапряжение, наблюдаемое при выделении таллия и серебра, связано с тем, что реакция восстановления требует участия одного электрона  [c.472]

    При комплексонометрических титрованиях нужно иметь в виду, чти ЭДТУ — четырехосновная кислота. Ступенчатые константы ее ионизации отвечают значениям р/( 2,0 2,7 6,2 10,3. В образующихся комплексах ионы металла замещают водородные ионы двух или более карбоксильных групп реагента. Поэтому pH раствора имеет большое значение при титровании комплексоном П1. [c.338]

    В пленочной теории, по которой наступление пассивного состояния связано с поверхностным оксидным слоем, большое внимание уделяется его возникновению и формированию. Основными факторами, определяющими этот процесс, являются потенциал металла, а также концентрации ионов металла и ОН- Потенциал металла должен быть достаточно положительным для того, чтобы обеспечить устойчивое состояние данного оксида. Концентрации металлических и гидроксильных ионов должны быть достаточно велики, чтобы стало возможным образование соответствующих основных солей или гидроксидов, последующие превращения которых приводят к пассивирующим оксидам. Пассивность должна наступать тем легче, чем выше электродная поляризация ири анодном растворении металла и чем ниже скорость удаления ионов металла от поверхности электрода. [c.483]

    Положение существенно меняется, если термодинамический электродный потенциал металла имеет величину, при которой наряду с ионизацией и разрядом ионов металла возможен хотя бы один дополнительный электродный процесс. В этом случае заряды через границу раздела между металлом и раствором переносятся уже не одним, а двумя видами частиц. Установившееся постоянное значение потенциала не обязательно свидетельствует о достижении равновесного состояния. Оно указывает лишь на то, что суммарное число зарядов, переходящих через границу в одном наиравлении, равно суммарному числу зарядов, пересекающих ее в обратном направлении, т. е., что [c.488]


    Солеобразующие свойства органических соединений зависят от присутствия в их молекулах определенных атомных групп, обладающих кислотными свойствами, например —СООН, —50зН, —ОН, =NOH, =ЫН, —ЫНг и др. Атомы водорода, входящие в состав этих групп, при определенных условиях замещаются на ион металла. Если же наряду с подобной кислотной группой в молекуле органического соединения имеется комплексообраэующая группа, которая может быть лигандом для данного катиона, то [c.123]

    Следовательно, поведение корродирующего электрода отвечает поведению обратимого металлического электрода, а установившееся значение компромиссного потенциала близко к равновесному потенциалу соответствующего металлического электрода (рис. 24.2) и должно изменяться с концентрацией ионов металла в соответствии с формулой Нернста. Изменение pH раствора ие влияет при этом заметно на величину стационарного потенциала. [c.489]

    Это позволяет для реакции с участием металла пренебречь скоростью разряда ионов металла /м, а для реакции с участием водорода — скоростью ионизации водорода /н. Тогда при замедленности электрохимической стадии можно, пренебрегая величиной -ф (концентрированные растворы поверхностно-инактивных электролитов), написать [c.491]

    Жо — концентрация иона металла, т1- п — порядок реакции относительно абсорбируемого компонента п —порядок реакцпп относительно жидкого реагента п — число элементов на пути жидкости  [c.10]

    Озониды — это соединения, состоящие из положительных ионов металла и отрицательных ионов О3 оо = 0,134 нм). Наличие в ионе Оз непарного электрона обусловливает парамагнетизм и наличие окраски у озонидов. Обычно они окрашены в красный цвет. [c.322]

    Процесс окисления масла достаточно сложен. Кроме кислорода и температуры на него оказывают влияние скорость сдвига, интенсивность перемешивания, примеси, ионы металлов (особенно меди и, в меньшей мере, железа и др,). [c.31]

    Активные участки могут быть примесями ионов металлов, локализованных вблизи поверхности которые могут обратимо связываться с О2, + О2 (газ) [МОз] "  [c.392]

    Применение органических осадителей требует создания определенных услови1[ и прежде всего надлежащей величины pH раствора. Причину этого понять нетрудно. Выше указывалось, что при образовании внутрикомплексных солей происходит замещение водорода кислотной группы реагента ионами металла при этом в раствор переходят ионы водорода, как это следует, например, из приведенного выше уравнения реакции между N1 + и диметилглиоксимом. Ясно, что положение равновесия должно зависеть от концентрации Н" , т. е. от величины pH раствора. Диметил-глиоксим (и другие подобные ему органические реагенты) ведет себя как слабая кислота. Поэтому к рассматриваемой реакции применимо все то, что говорилось ранее о значении величины pH при осаждении малорастворимых солей слабых кислот. И здесь, если известна величина ПР осадка и константа кислотной ионизации реагента, можно вычислить величину pH, при которой достигается полное осаждение. [c.125]

    Эти же цепи при определенных условиях можно использовать для установления температуры аллотропического превращения. Если повысить температуру до значения, при котором а-модификация переходит в р-модификацию, то оба -)лектрода окажутся в одной и той же модификации и э.д.с. системы будет равна (или близка) нулю. Э.д.с. системы может отличаться от нуля потому, что свободная энергия двух электродов, изготовленных из металла одной и той же модификации, не обязательно должна быть одинаковой. Это наблюдается, например, в том случае, когда электроды различаются по размерам образующих их зерен или находятся под различным внутренним напряжением. Электрод, образованный более мелкими кристаллами или находящийся под избыточным механическим напряжением, играет роль отрицательного полюса элемента. Он растворяется, а на другом электроде происходит осаждение металла. Более того, разность потенциалов может возникать даже, если в качестве электродов использоЕ1аны разные грани монокристалла одного и того же металла, поскольку они обладают разным запасом свободной энергии. Электрод, образованный гранью с по-выщенным запасом поверхностной энергии, будет растворяться, а ионы металла — выделяться на грани с меньшей поверхностной энергией. Следует, однако, подчеркнуть, что во многих из этих случаев разность потенциалов, существующая между двумя различными образцами одного и того же металла, не должна отождествляться с обратимой э.д.с., поскольку она отвечает не равновесному, а стационарному состоянию элект[)0Д0в. Разности потенциалов, возникающие в рассмотренных случая , обычно малы, тем не менее в некоторых электрохимических процессах, в частности в процессах коррозии, их необходимо принимать во внимание. [c.195]

    Губчатая структура осадков металлов объясняется тем, что при большей плотности тока на катоде в единицу времени разряжается больше ионов металла, чем их успевает подходить к катоду из раствора. Поэтому раствор около катода обедняется определяемыми ионами настолько, что начинают разряжаться также Н+-Н0НЫ. Образующийся при этом газообразный водород покрывает поверхность катода пузырьками, которые при дальнейшем осаждении металла разрыхляют его слой. Металл оказывается при этом пронизанным огромным количеством мелких пор, и связь его с электродом становится непрочной. [c.437]

    При построении диаграммы необходимо иыбрать определенные значения активностей ионов железа. Обычно диаграммы Г—pH. как уже отмечалось, строятся длн четырех значений активности— 10 , 10 , 10 и 10" моль-л . При равновесной активности (концентрацни) ионов металла в растворе, равной 10 моль-л и менее, его можно считать коррозионно устойчивым кроме того, эта величина соответствует Г1рактическс1му пределу применимости формулы Нернста для электродных потенциалов. [c.190]

    Аллотропические цепи. В аллотропических цепях электродами служат две модификации одного н того же металла (М и Мр), погруженного в раствор (или в расплав) его ионопроводящего соединения. При данной темпера1уре только одна из модификаций выбранного металла устойчива (если это не температура фазового превращения, при которой существуют в равновесии обе модификации), другая же находится в метастабильном состоянии. Электрод, изготовленный из металла в метг Стабильном состоянии (пусть это будет Мр), должен обладать повышенным запасом свободной энергии. Он играет роль отрицательного электрода элемента и посылает ионы металла в раствор  [c.194]

    По концеиции ионного обмена между металлом и раствором условие равновесия на электроде означает равенство электрохимических потенциалов ионов металла в этих двух фазах (10.34). По концепции ионно-электронного обмена с тем же основанием можно наряду с (10.34) напрсать [c.227]

    Ионы металлов переменной валентности как восстанавливающие и окисляющие агенты. Три )ассмотреиных варианта не исчерпывают всех во Можных иутсЙ нротекания окислительно-восстановительных реакций. В роди восстановительных (или окислительных) агентов могут выступать также находящиеся в растворе коны металлов. В этом с.лучае электродный процесс сводится к окислению (или восстановлению) ионов металлов переменной валентности, которые затем восстанавливают (или окисляют) органическое соединение. В качестве при у1сра можно указать на электроокисление суспензии антрацена. При проведении электролиза такой суспензии иочти весь ток на аноде расходуется на выделение кислорода. Если, однако, добавить к ней немного солен церия, хрома или марганца, то на аноде наряду с кислородом появится также антрахинон. Реакция идет, по-видимому, следующим образом ионы металла, наиример церия, окисляются на аноде [c.443]

    Поскольку 02f2равновесного потенциала того же металла в том же растворе. Из (22.5) также в согласии с опытом следует, что меняется с активностью ионов металла в растворе по такому же закону, как и равновесный потенциал электрода первого рода  [c.457]

    В результате реакции комплексообразования определенная доля ионов М"+ (тем большая, чем ниже константа нестойкости) будет присутствовать в растворе в виде сложных ионов МА - и, следовательно, концентрация свободных ионов металла должна уменьшиться. Это уменьшение и, соответственно, сдвиг обратимого потенциала электрода в этрицательную сторону будут тем значительнее, чем меньше констан-га нестойкости и чем выше концентрация добавки. Подбирая соответствующие комнлексообразо-ватели и их концентрации, можно изменить равновесные потенциалы присутствующих в растворе ионов различных металлов таким образом, чтобы обеспечить или их совместное осаждение в виде сплава, или наиболее полное разделение. [c.463]

    Если кусок какого-либо металла М привести в контакт с водным раствором его соли МА, то через некоторое время на границе между металлом и раствором установится значение потенциала, которое в дальнешем будет сохраняться почти неизменным. Эта постоянная (или почти постоянная) величина отвечает либо равновесию между металлом и раствором, либо стационарности электродного процесса. Какой из этих случаев реализуется в действительности, определяется в первую очередь самой величиной электродного потенциала. Если термодинамический электродный потенциал металла имеет величину, при которой в данных условиях исключено протекание всех других ироцессов (кроме обмена металлическими иоиами между металлом и раствором), то установившаяся величина нотенциала будет отвечать его равновесному значению в данных условиях. Скорость перехода ионов металла в двух противоположных направлениях при достиженип состояния равновесия сделается одинаковой и равной току обмена  [c.488]

    Теперь уже компро.мпссиый потенциал близок к потенциалу водородного электрода в данных условиях (рис. 24.3). Его величина закономерно изменяется с pH раствора и почти не зависит от концентрацни ионов металла. Таким образом, здесь стационарный по- [c.489]

    Каталитическое действие ионов металлов на окисление масла подавляется соединениями другой группы антиокислительных присадок - деактиваторами металлов (metal dea tivators). В качестве деактиваторов применяются органические соединения (эти-лендиамины, органические кислоты), связывающие ионы металлов в неактивные комплексы. В последнее время в зарубежной литературе появились данные, что небольшое количество ионов меди в моторных маслах наоборот, является эффективным антиоксидантом и специально вводится в некоторые сорта масел. Этот момент следует учитывать при анализе работающих или отработанных моторных масел. [c.32]

    Эта проблема была детально обсуждена в связи с вопросом о природе связи в комплексных ионах металлов (53). Оказывается, что тип связи (ковалентной или ионной) в значительной мере зависит от силы электрических взаимодействий с комплексообра-йующими группами. [c.454]


Смотреть страницы где упоминается термин Ионы металлов: [c.338]    [c.338]    [c.439]    [c.169]    [c.221]    [c.223]    [c.228]    [c.341]    [c.342]    [c.439]    [c.471]   
Смотреть главы в:

Биоорганическая химия -> Ионы металлов

Химия гетероциклических соединений -> Ионы металлов

Химия гетероциклических соединений -> Ионы металлов

Органическая химия растворов электролитов -> Ионы металлов

Физико-химические основы ферментального катализа -> Ионы металлов


Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.0 ]

Успехи органической химии Том 3 (1966) -- [ c.84 ]

Молекулярная биология (1990) -- [ c.0 ]

Химия кремнезема Ч.1 (1982) -- [ c.0 ]

Биологическая химия Изд.3 (1998) -- [ c.96 ]

Методы и достижения бионеорганической химии (1978) -- [ c.11 , c.13 , c.28 ]




ПОИСК







© 2025 chem21.info Реклама на сайте