Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частотный фактор бимолекулярных реакций

    Такая простая теория соударений предсказывает величину предэкспо-ненциальных множителей порядка 10 см моль сек, поскольку можно ожидать / <1. Величину Р < 1 можно объяснить тем, что не всякое бимолекулярное столкновение, даже в том случае, когда энергия сталкивающихся частиц достаточно велика для того, чтобы частицы прореагировали между собой, приводит к образованию продуктов реакции. Для того чтобы достаточно сложные молекулы прореагировали между собой, они должны быть соответствующим образом ориентированы одна относительно другой (сте-рические препятствия). В теории активированного комплекса соответствующий член носит название энтропийного фактора, и так как энтропия активации становится меньше нуля, то Р не может быть больше единицы. Эти результаты хорошо согласуются с экспериментом, и величина 2ав, по-видимому, действительно является верхним пределом бимолекулярного частотного фактора.  [c.249]


    При такой постановке вопроса о вычислении константы скорости мономолекулярных реакций исчезает принципиальное различие между мономолекулярными и бимолекулярными реакциями, что соответствует общей направленности классической теории мономолекулярных реакций, а с другой стороны корректирующий множитель Линдемана-Гиншельвуда не выражает еще абсолютной величины предэкспоненциального или частотного фактора и не соответствует -более величине энтропийного фактора, как это принималось для адиабатических реакций. [c.175]

    Температура продуктов горения в некоторой степени зависит от начальной температуры свежей смеси и конструкции горелки. Она может быть как низкой (1400 К) в очень разбавленном водородном пламени, так и высокой (3300 К) в случае неразбавленной стехиометрической смеси. Многие работы проделаны в температурном интервале 2000—2500 К, причем почти в центре этого интервала при температуре 2102 К энергии 40 кДж/моль соответствует больцмановский множитель, равный 0,1. Поскольку эта температура в семь раз больше комнатной, энергетические барьеры в пламенах при этой температуре в семь раз менее важны, чем при комнатной. Это обстоятельство указывает на важную роль энтропии реакции определяющими являются реакции, в которых образуется множество промежуточных частиц. Поэтому химический механизм реакций в пламенах обусловлен простейшими частицами атомами, двухатомными молекулами, некоторыми трехатомными, но обычно не более сложными. Поскольку в реакциях участвуют простейшие молекулы, обобщенная энтропия активации мала, т. е. частотные факторы нормальные и сечение равно газокинетическому. Из этого следует, что время полупревращения большинства бимолекулярных процессов порядка микросекунд, что на три порядка меньше временного масштаба газового потока, следовательно, процессы в пламени можно считать равновесными. Молекула испытывает около 10 ° столкновений в секунду, а значит, время полупревращения реагентов меньше миллисекунды, если произведение больцмановского множителя и парциального давления партнеров реакции больше 10 . Такая ситуация достигается только для реагирующих добавок или в случае большой энергии активации реакции. [c.211]

    Уравнение (2-5) показывает также, что предэкспоненциальный, или частотный, фактор А связан с энтропией активации бимолекулярной реакции (Ап = — 1) соотношением [c.42]

    Из всех трех тримолекулярных реакций, представленных в табл. XII.9, только реакция N0 с Ог была изучена при и1ироком варьировании условий. Все три реакции, однако, имеют примерно одинаковые по величине иредэксио-ненциальные множители, отвечающие стерическому фактору около 10 . Гершинович и Эйринг Ц20] показали, что теория переходного состояния может привести к такой величине частотного фактора при разумном выборе молекулярных параметров для переходного KOMUjreK a. С другой стороны, любой из двух механизмов, включающих промежуточные комплексы (N0) или NO-Оз, приводит к удовлетворительному объяснению величины скорости реакции NO+Oa, в то время как для реакций N0 с I2 и Вга можно лишь предполагать образование комплексов N0 l2 и NO-Bra- В этих случаях для наблюдаемой константы скорости [см. уравнение (XII.15.5)] справедливо соотношение /Снабл == Ккг, где К есть константа равновесия образования промежуточного бимолекулярного комплекса, а к — бимолекулярная константа скорости последующей реакции этого комплекса. [c.274]



Смотреть страницы где упоминается термин Частотный фактор бимолекулярных реакций: [c.265]    [c.254]    [c.167]    [c.173]    [c.222]    [c.254]    [c.274]   
Основы химической кинетики (1964) -- [ c.242 , c.246 , c.248 , c.251 , c.261 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции бимолекулярные



© 2024 chem21.info Реклама на сайте