Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гормоны механизм второго посредника

    Каждый гормон высокоспецифичен и действует только на определенные клетки-мишени, несущие на своей поверхности соответствующие белковые рецепторы. У клеток, не являющихся мишенями для данного гормона, таких рецепторов нет, и поэтому гормон не оказывает на них влияния. Связавшись со своим рецептором, гормон может изменить работу разных структур клетки-мишени. Это прежде всего 1) клеточная мембрана 2) встроенные в нее ферменты (механизм второго посредника) 3) гены. [c.338]


    МЕХАНИЗМ ВТОРОГО ПОСРЕДНИКА. Адреналин и многие пептидные гормоны, связавшись с рецепторами наружной мембраны, не могут проникнуть в кпетку, однако они вызывают высвобождение внутрь клетки второго посредника , который запускает там соответствующую серию ферментативных реакций, приводящих к нужному эффекту. Во многих случаях роль второго посредника играет нуклеотид циклический аденозинмонофосфат (цАМФ), механизм действия которого в упрощенном виде показан на рис. [c.338]

    Значительный вклад в выяснение механизма действия гормонов внес американский биохимик Эрл Уилбур Сазерленд (1915—1973) своими работами по изучению циклической аденозинмонофосфорной кислоты (ЦАМФ). В процессе исследования действия гормона адреналина на клетки печени и мышц он обнаружил новое химическое вещество, действующее в качестве посредника между гормоном и клеткой, передающее инструкцию от гормона к соответствующему ферментативному механизму клетки. Он назвал это вещество вторым посредником и идентифицировал как ЦАМФ следующего строения  [c.421]

    Вторая основная группа состоит из водорастворимых гормонов, которые присоединяются к плазматической мембране клеток-мишеней. Воздействие присоединившихся к поверхности клетки гормонов на внутриклеточные процессы обмена опосредуется промежуточными соединениями, называемыми вторыми посредниками (первый посредник — сам гормон) последние образуются в результате взаимодействия лиганд—рецептор. Концепция второго посредника возникла в результате работ Сазерленда, показавшего, что адреналин связывается с плазматической мембраной эритроцитов голубя и увеличивает внутриклеточную концентрацию с AM Р. В последующих сериях исследований было выявлено, что с АМР опосредует метаболические эффекты многих гормонов. Гормоны, в отношении которых доказан такой механизм действия, составляют группу U.A. Некоторые гормоны используют в качестве внутриклеточного сигнала кальций или метаболиты сложных фосфоинозитидов (или то и другое вместе), хотя первоначально предполагалось, что они действуют через с AM Р. Эти гормоны включены в группу II.Б. Для большой и очень интересной группы II.В внутриклеточный посредник окончательно не установлен. В качестве возможных кандидатов на эту роль для инсулина рассматривали целый ряд соединений сАМР, GMP, Н2О2, кальций, несколько коротких пептидов, фосфолипид, сам инсулин и инсулиновый рецептор, но пока не найдено ни одного, отвечающего необходимым критериям. Может оказать- [c.158]


    Б. Внутриклеточные медиаторы. Хотя механизм действия инсулина изучается более 60 лет, некоторые важнейшие вопросы, например природа внутриклеточного сигнала, остаются нерешенными, и инсулин в этом отношении не исключение. Внутриклеточные посредники не идентифищ1рованы для очень многих гормонов (табл. 44.1). Множество различных молекул рассматривалось в качестве возможных внутриклеточных вторых посредников или медиаторов. К ним относятся сам инсулин, кальций, циклические нуклеотиды (сАМР, сСМР), Н2О2, пептиды мембранного происхождения, фосфолипиды мембраны, одновалентные катионы и тирозинкиназа (рецептор инсулина). Не одно из предположений не подтвердилось. [c.261]

    На каждом уровне следует различать два типа регуляции саморегуляцию, направленную на поддержание постоянными ключевых параметров, и слежение за сигналами, поступающими от верхних уровней [11, 20]. Механизмы слежения заключаются в восприятии этих сигналов и их преобразовании в сигналы, посылаемые подсистемам. Существуют два общих принципа регуляции, характерных для механизмов слежения любого уровня 12—15]. Во-первых, биологическая система содержит пространственно разделенные элементы, выполняющие рабочие функции, и элементы, выполняющие функции управления (например, в клетке функции управления осуществляет рецепторный аппарат). Во-вторых, управление данной биологической системой должно осуществляться факторами, которые являются внешними по отношению к этой системе. Примером может служить связывание рецепторным аппаратом клетки первых посредников (гормонов, нейромедиаторов и других внешних по отношению к клетке факторов), в результате которого генерируются так называемые вторые посредники (циклический АМР, инозитолтрифосфат, диацилглицерин, Са + [c.15]

    Работа Сазерленда привела к созданию концепции о роли с АМР как второго посредника в механизме действия некоторых гормонов. Первым посредником является сам гормон. Сушдость этой концепции заключается в следуюш ем. [c.285]

    Второй тип механизмов, регулирующих метаболизм у высших организмов,-это гормональная регуляция (рис. 13-16). Гормонами называют особые химические вещества (химические посредники ), вырабатьшаемые различными эндокринными железами и выделяемые непосредственно в кровь они переносятся кро)вью к другим тканям или органам и здесь стимулируют или тормозят определенные виды метаболической активности. Гормон адреналин, например, секретируется мозговым веществом надпочечника и переносится кровью в печень, где он стимулирует распад гликогена до глюкозы, что вызывает повьппение уровня сахара в крови. Кроме того, адреналин стимулирует распад гликогена в скелетных мьппцах этот процесс приводит к образованию лактата и к запасанию энергии в форме АТР. Адреналин вызывает эти эффекты, присоединяясь к особым рецепторным участкам на поверхности мьппечных клеток или клеток печени. Связывание адреналина служит сигналом этот сигнал передается [c.389]

    Исходно цель опытов с использованием рекомбинантных ДНК состояла в получении важных с медицинской и экономической точек зрения белков, например вакцин и межклеточных пептидных посредников (инсулина, гормона роста и оксигоцина). Идея заключалась в клонировании гена, кодирующего данный полипептид, встраивании его в плазмиду, которая реплицируется в Е. соИ таким образом, чтобы промотор Е. соИ регулировал транскрипцию, а затем в синтезе на рибосомах Е. соИ больших количеств нужного белка. Почему эта довольно прямолинейная схема оказалась сложнее, чем вначале предполагалось (разд. 7.8) Во-первых, в большинстве эукариотических генов имеются интроны, а в генах Е. соИ их нет у бактерий отсутствует механизм сплайсинга, и поэтому невозможно получить соответствующую данному эукариотическому гену мРНК. Во-вторых, из первичных продуктов трансляции многих эукариотических генов, в частности из предшественников полипептидных гормонов, может образоваться активный генный продукт лишь в результате специфического посттрансляционного процессинга, который в клетках Е. соИ не осуществляется. Наконец, успешному получению больших количеств многих эукариотических белков мешает их токсичность для бактериальных клеток, деградация бактериальными протеазами и нерастворимость в цитоплазме бактериальной клетки. [c.359]


Смотреть страницы где упоминается термин Гормоны механизм второго посредника: [c.94]    [c.226]    [c.99]   
Биология Том3 Изд3 (2004) -- [ c.338 ]




ПОИСК





Смотрите так же термины и статьи:

Гормоны



© 2024 chem21.info Реклама на сайте