Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лактат образование из глюкозы

    На каждую молекулу лактата при глюконеогенезе расходуется три молекулы АТФ (точнее, две — АТФ и одна — ГТФ, см. рис. 9.21) поскольку для образования глюкозы необходимо две молекулы лактата, суммарный процесс глюконеогенеза описывается так  [c.266]

    Пропионовокислые бактерии особенно многочисленны в пищеварительном тракте жвачных животных. В рубце имеются бактерии, способные гидролизовать целлюлозу с образованием глюкозы, которая затем превращается в лактат и другие продукты. Пропионовокислые бактерии способны превращать как глюкозу, так и лактат в пропионовую и уксусную кислоты, которые затем всасываются в кровеносную систему хозяина. Одновременно образуется небольшое количество янтарной кислоты. [c.352]


    Брожение является также жизненно важным процессом и для человеческого организма. Хотя в обычных условиях наши мышцы получают вполне достаточные количества кислорода, чтобы произошло окисление пирувата и образование АТР аэробным путем, бывают обстоятельства, когда поступление кислорода оказывается недостаточным. Например, при крайнем напряжении сил, когда уже весь запас кислорода израсходован, мышечные клетки образуют лактат путем брожения. Более того, в белых мышцах рыб или домашней птицы аэробный метаболизм относительно невелик, и основным конечным продуктом оказывается L-лактат. В организме человека есть такие ткани, которые слабо снабжаются кровью, например хрусталик и роговица глаза. В клетках этих тканей окислительный метаболизм выражен слабо, а энергия в основном образуется при сбраживании глюкозы в лактат. [c.345]

    Живые организмы не могут существовать без энергии, и поэтому в цепи реакций брожения наиболее важное значение имеет реакция, обусловливающая образование АТР. В случае молочнокислого брожения и в большинстве других типов брожения такой реакцией является окисление глицеральдегид-З-фосфата в 3-фосфоглицерат. Окисление альдегида в карбоновую кислоту — реакция сильно экзергоническая, сопряженная с синтезом АТР. Поскольку из каждой молекулы глюкозы образуются две молекулы триозофосфата, при брожении на каждую молекулу израсходованной глюкозы образуются две молекулы АТР. Этого вполне достаточно для поддержания жизни у бактерий, если достаточно количество сбраживаемого сахара. Анаэробное превращение глюкозы в лактат — лишь один из примеров множества различных процессов брожения, которые мы рассмотрим в гл. 9. [c.85]

    Снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода носит название эффекта Пастера. Впервые это явление наблюдал Л. Пастер во время своих широко известных исследований роли брожения в производстве вина. В дальнейшем было показано, что эффект Пастера наблюдается также в животных и растительных тканях, где кислород тормозит анаэробный гликолиз. Значение эффекта Пастера, т.е. перехода в присутствии кислорода от анаэробного гликолиза или брожения к дыханию, состоит в переключении клетки на наиболее эффективный и экономичный путь получения энергии. В результате скорость потребления субстрата, например глюкозы, в присутствии кислорода снижается. Молекулярный механизм эффекта Пастера заключается, по-ви-димому, в конкуренции между системами дыхания и гликолиза (брожения) за АДФ, используемый для образования АТФ. Как известно, в аэробных условиях значительно эффективнее, чем в анаэробных, происходят удаление и АДФ, генерация АТФ, а также регенерирование НАД, окисленного из восстановленного НАДН. Иными словами, уменьшение в присутствии кислорода количества и АДФ и соответствующее увеличение количества АТФ ведут к подавлению анаэробного гликолиза. [c.353]


    Позднее мы ответим на этот важный вопрос более подробно (гл. 25), сейчас же скажем только, что если организм оказывается внезапно в критической ситуации, то мозговое вещество надпочечника выделяет в кровь гормон адреналин, который служит молекулярным сигналом для печени и мышц. Под влиянием этого сигнала печень включает свою гликоген-фосфорилазу, в результате чего повышается уровень глюкозы в крови, т.е. мышцы получают топливо. Этот же сигнал включает в скелетных мышцах расщепление гликогена с образованием лактата, благодаря чему усиливается [c.464]

    В аэробных условиях реакции гликолиза, остановившиеся на стадии образования пирувата (непосредственного предшественника лактата), составляют первую, начальную фазу деструкции углеводов, связанную далее с циклом трикарбоновых кислот. Гликолиз и цикл трикарбоновых кислот приводят к полному окислению глюкозы до СО2 и вьщелению больших количеств метаболической энергии (АТФ). [c.243]

    Лактат, образованный сокращающейся мышцей, превращается в печени в глюкозу [c.111]

Рис. 15.8 Цикл Кори. Лактат, образованный активной мышцей, превращается в печени в глюкозу. Этот цикл передает часть метаболического груза активной мышцы в печень. Рис. 15.8 Цикл Кори. <a href="/info/81116">Лактат</a>, <a href="/info/1034054">образованный активной</a> мышцей, превращается в печени в глюкозу. Этот цикл передает часть метаболического груза активной мышцы в печень.
    ГО промежуточного продукта цикла лимонной кислоты и углеродные скелеты многих аминокислот способны превращаться в глюкозу. Из жирных кислот с четным числом атомов углерода и из ацетил-СоА реального образования глюкозы не происходит, тогда как три углеродных атома жирных кислот с нечетным числом атомов углерода, а также образуемый бактериями рубца пропионат могут превращаться в глюкозу при этом в качестве промежуточного продукта образуется метилмалонил-СоА, превращающийся затем в сукци-нил-СоА при участии кофермента Bi2-В периоды восстановления после напряженной мышечной работы глюконеогенез протекает очень активно, благодаря чему присутствующий в крови лактат превращается в гликоген и глюкозу. [c.618]

    В качестве еще одного примера регуляции этого типа можно привести превращения, протекающие при работе мышц. Источником АТФ, необходимой для интенсивной мышечной деятельности, является превращение глюкозы. На первой фазе глюкоза в результате цепи гликолитических превращений образует пируват. Однако дальнейшее окислительное превращение пирувата требует адекватной доставки в мышцы кислорода. Если создается дефицит последнего, то в мышечной ткани накапливаются пируват и восстановленный никотинамидный кофермент. В результате действия мышечной лактат дегидрогеназы происходит их превращение в NAD и лактат, что обеспечивает регенерацию NAD, необходимого для дальнейшего течения гликолиза, и образование некоторого количества АТФ в результате фосфорилирования АДФ дифосфоглицератом и фосфоенолпирува-том. В мышцах при этом начинает накапливаться молочная кислота. После окончания периода интенсивной мышечной деятельности образование NAD-H существенно замедляется и доставка кислорода в мышцы обеспечивает необходимый масштаб функционирования цепи переноса электронов, основная часть NAD-H переходит в NAD и та же лактат дегидрогеназа обеспечивает постепенное превращение накопившегося лактата в пируват, который через стадию окислительного декарбоксилирования поступает на конечное сжигание в цикле трикарбоновых кислот. [c.422]

    Эти два процесса не могут идти независимо друг от друга они обязательно должны быть сопряжены. Однако, написав оба уравнения по отдельности, мы видим, что превращение 1 моль глюкозы в лактат в стандартных условиях приводит к высвобождению гораздо большего количества свободной энергии (47,0 ккал), чем необходимо для образования 2 моль АТР из ADP и фосфата (2 7,3 = -I-14,6 ккал). В живой клетке при истинных внутриклеточных концентрациях АТР, ADP и Р , а также глюкозы и лактата эффективность запасания высвобождающейся при гликолизе энергии в форме АТР превышает 60%. Пользуясь уравнениями (1) и (2), мы [c.441]

    Мы начнем рассматривать генерирование метаболической энергии с гликолиза, почти универсального процесса для биологических систем. Гликолиз-это последовательность реакций, приводящих к превращению глюкозы в пируват с одновременным образованием Ат Р. У аэробных организмов гликолиз предшествует циклу трикарбоновых кислот и цепи переноса электронов, которые вместе извлекают большую часть энергии, содержащейся в глюкозе. При аэробных условиях пируват проникает в митохондрии, где он полностью окисляется до СО2 и Н2О. При недостаточном содержании кислорода, как это может иметь место в активно сокращающейся мышце, пируват превращается в лактат. У некоторых анаэробных организмов, таких, как дрожжи, пируват превращается не в лактат, а в этанол. Образование этанола и лактата из глюкозы-это примеры брожения. [c.23]


    В процессе гликолиза молекула глюкозо-6-фосфата превращается в две молекулы пирувата, последний в анаэробных условиях восстанавливается до лактата. Третья важная реакция — окислительное декарбоксилирование пирувата, которое завершается образованием ацетил-КоА (С2-фрагмент), который затем вовлекается в цикл трикарбоновых кислот. Через реакцию трансаминирования пируват связан с аминокислотами, а при окислении глицерола (метаболит липидов) образуются триозы (3-фосфоглицериновый альдегид или 3-фос- [c.443]

    Глубоководные исследования показали, что на очень больших глубинах, там, где содержание кислорода в воде близко к нулю, обитает тем не менее много видов животных. У этих обитателей больших глубин метаболизм имеет по преимуществу анаэробный характер расщепление углеводов приводит у них к образованию лактата и некоторых других продуктов, большая часть которых должна выводиться из организма. У некоторых морских позвоночных для получения энергии в форме АТР глюкоза сбраживается не до лактата, а до этанола и СОг- [c.443]

Рис. 20-5. Взаимодействие скелетных мышц и печени в процессе восстановления после тяжелой мышечной работы, во время которой происходит анаэробное расщепление гликогена с образованием двух молекул лактата и двух молекул АТР на каждую расщепленную глюкозную единицу. В период восстановления (показано красным) лактат, поступивший из мышц в кровь, превращается в печени в глюкозу крови. На образование одной молекулы глюкозы из двух молекул лактата расходуется шесть молекул АТР. Г люкоза доставляется кровью обратно в мышцы и откладывается здесь в запас в виде гликогена. Рис. 20-5. Взаимодействие <a href="/info/169225">скелетных мышц</a> и печени в <a href="/info/221483">процессе восстановления</a> после <a href="/info/519545">тяжелой</a> мышечной работы, во время которой происходит анаэробное расщепление гликогена с образованием двух молекул лактата и двух молекул АТР на каждую расщепленную глюкозную единицу. В период восстановления (показано красным) <a href="/info/81116">лактат</a>, поступивший из мышц в кровь, превращается в печени в <a href="/info/1411777">глюкозу крови</a>. На образование одной молекулы глюкозы из двух молекул лактата расходуется шесть молекул АТР. Г <a href="/info/495236">люкоза</a> доставляется кровью обратно в мышцы и откладывается здесь в запас в виде гликогена.
    Когда субстратом для роста клетки служит глюкоза, этот сахар используется для синтеза всех клеточных компонентов, содержащих глюкозу, рибозу, дезоксирибозу и другие производные сахаров. В этом случае анаплеротические реакции обеспечивают прежде всего бесперебойную работу цикла трикарбоновых кислот. При росте микроорганизмов на среде с лактатом, пируватом, ацетатом, глиоксилатом и другими углеродными соединениями дополнительные метаболические пути необходимы не только для поддержания цикла трикарбоновых кислот, но и для образования промежуточных продуктов, используемых при биосинтезе сахаров (глюконеогенезе). [c.248]

    Около 90% ГЛЮКОЗЫ, усваиваемой эритроцитами, превращается в процессе гликолиза в лактат, но - 10% окисляется (через образование глюкозо-6-фосфата) в 6-фосфоглюконат. Это окисление (реакция а) катализируется глюкозо-6-фос-фат — дегидрогеназой [уравнение (8-42)] с участием NADP+. Именно эта реакция в основном обеспечивает эритроциты необходимым количеством NADPH, используемым для восстановления глутатиона (дополнение 7-Ж) в ходе реакции б. Глюкозо-6-фосфат—дегидрогеназа имеет очень важное значение, и все же свыше 100 млн. человек, особенно в тропических и средиземноморских странах, имеют наследственный недостаток этого фермента. Как оказалось, генетически эти нарушения весьма разнородны — обнаружено уже по меньшей мере 22 типа такого рода нарушений. Установлено, что отсутствие этого фермента приводит к весьма серьезным последствиям при некоторых заболеваниях, а также в ответ на введение определенных лекарственных препаратов наблюдается разрушение большого количества эритроцитов. Выживаемость дефектных генов, как и в случае серповидноклеточной анемии (дополнение 4-Г), по-видимому, обусловлена повышенной сопротивляемооью людей, имеющих такие гены, к малярии. [c.371]

    У человека известен ряд генетических болезней, связанных с нарушением синтеза или распада гликогена. Одним из первых был описан случай хронического увеличения печени-у 8-летней девочки, у которой наблюдались также различного рода нарушения обмена. Девочка умерла от гриппа. Вскрытие показало, что ее печень была в 3 раза больше нормы в ней содержалось огромное количество гликогена на долю его приходилось почти 40% сухого веса органа. Выделенный из печени гликоген в химическом отношении оказался вполне нормальным, однако, когда кусочек ткани печени гомогенизировали и инкубировали в буфере, этот гликоген так и остался интактным-ни лактат, ни глюкоза не образовались. Когда же к гликогену добавили суспензию, приготовленную из ткани нормальной печени, то очень быстро произошло его расщепление до глюкозы. На основании этой биохимической проверки исследователи пришли к выводу, что у больной был нарушен процесс расщепления гликогена (эту болезнь часто называют болезнью Гирке по имени описавшего ее врача). Сначала предполагалось, что дефектным ферментом была в этом случае глюкозо-6-фос-фатаза, поскольку больная печень не образовывала глюкозы однако отсутствие образования лактата указывало на то, что дефект затрагивал либо гликоген-фосфорилазу, либо дебранчинг-фермент [а(1 - 6)-глюкозидазу]. Позже исследователи укрепились в мнении, что в этом классическом случае была затронута именно а(1 - 6)-глюкозидаза. Вследствие этого в молекулах гликогена, находящихся в печени, могли расщепляться с образованием глюкозы или [c.616]

    Образование глюкозы из пирувата или лактата (глюконеогенез) играет определенную роль тогда, когда эти и другие вещества служат источниками углерода в отсутствие углеводов. Синтез идет по фруктозобисфосфатному пути, за исключением трех необратимых реакций (рис. 16.14). Эти этапы катализируются регулируемыми ферментами. В животных тканях путь от пирувата к фосфоенолпирувату проходит через оксалоацетат. Первая реакция катализируется пируваткарбоксила-зой и зависит от присутствия ацетил-СоА. По-видимому, ацетил-СоА играет в данном случае роль сигнала, свидетельствующего о насыщении всех реакций, использующих это соединение, в особенности реакций ко-нечного окисления через цикл трикарбоновых кислот. Такая регуляция гарантирует получение энергии и допускает синтез глюкозы лишь при избытке ацетил-СоА. Кроме того, зависимость образования оксалоацетата от ацетил-СоА может быть существенной для обеспечения цикла трикарбоновых кислот необходимым количеством оксалоацетата. [c.495]

    Известен ряд генетически детерминированных болезней накопления гликогена. Установлено, что в печени пораженных болезнью Гирке типа I отсутствует глюкозо-6-фосфатаза. Это вызывает гипогликемию, так как не происходит образования глюкозы из глюкозо-6-фосфата. Фосфорилированный сахар не покидает печень, поскольку не может пересечь плазматическую мембрану. Происходит компенсаторное усиление гликолиза в печени, обусловливающее повышенное содержание лактата и пирувата в крови. Гликоген печени у таких больных имеет нормальную структуру. Болезнь типа III характеризуется аномальной структурой гликогена мышц и печени и значительным увеличением его количества. Отклонением от нормы является очень маленькая длина внешних ветвей гликогена. У таких больных отсутствует фермент, разрывающий связи в местах ветвле- [c.181]

    Глюконеогенез включает все механизмы и пути, обеспечивающие образование глюкозы и гликогена из неуглеводных компонентов. Главными субстратами глюконеогенеза служат глюкогенные аминокислоты, лактат, глицерол и (у жвачных) пропионат. Гликонеогенез происходит главным образом в печени и почках, поскольку именно в этих органах имеется полный набор необходимых ферментов. [c.196]

    Одной из важнейших реакций свободной глюкозы является се фосфорили-роваиие при участии гексокиназы и АТФ с образованием глюкозо-6-фосфата, В свою очередь глюкозо-6-фосфат — это важнейший предшественник, учас -вующий в разнообразных синтетических и энергетических процессах в гликолизе, цикле трикарбоновых кислот, синтезе гликогена, аминокислот, жирных кислот, стероидов и т. д. Особое место в метаболизме глюкозы в головном мозгу занимает синтез гликогена, превращение глюкозы в глутамат и другие аминокислоты с участием ЦТК, а также образование пирувата с последующим окислительным декарбоксилированием его и образованием ацетил-КоА или превращение ее в лактат. [c.261]

    Превращение глюкозы в лактат или в этанол и Oj сопровождается в итоге синтезом двух молекул АТР. Логичнее всего считать, что оии образуются иа стадии окисления глицеральдегид-З-фосфата. Образование же АТР из РЕР и ADP на стадии 10 (рис. 9-7) можно рассматривать как воспроизводство АТР, истраченного на затравочные реакции Отметим, что выход АТР при превращении в пируват глюкозиых остатков гликогена составляет три молекулы. Однако на включение в состав гликогена каждого остатка глюкозы ранее потребовалось затратить две молекулы АТР (уравнение П-24). Следовательно, суммарный выход сбраживания запасенного ранее полисахарида составляет всего одиу молекулу АТР на молекулу гексозы. [c.339]

    Гликолиз. Понятие гликолиз означает расщепление глюкозы. Первоначально этим термином обозначали только анаэробное брожение, завершающееся образованием молочной кислоты (лактата) или этанола и СО,. В настоящее время понятие гликолиз используется более широко для описания распада глюкозы, проходящего через образование глю-козо-6-фосфата, фруктозобисфосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляют термин аэробный гликолиз в отлгиие от анаэробного гликолиза , завершающегося образованием молочной кислоты (лактата). [c.319]

    Гликогеноз I типа (болезнь Гирке) встречается наиболее часто, обусловлен наследственным дефектом синтеза фермента глюкозо-6-фосфатазы в печени и почках. Болезнь наследуется по аутосомно-рецессивному типу. Патологические симптомы появляются уже на первом году жизни ребенка увеличена печень, нередко увеличены почки. В результате гипогликемии появляются судороги, задержка роста, возможен ацидоз. В крови—повышенное количество лактата и пирувата. Введение адреналина или глюкагона вызывает значительную гиперлактатацидемию, но не гипергликемию, так как глюкозо-6-фосфатаза в печени отсутствует и образования свободной глюкозы не происходит. [c.362]

    Фн—неорганический фосфат). Значит, при образовании двух молекул лактата из молекулы глюкозы происходит фосфорили-рование — т двух молекул АДФ и фосфата образуются две молекулы АТФ. При этом идет восстановление НАД до НАД-Н и обратный процесс окисления НАД-Н до НАД. Термодинамический баланс процесса сводится к выделению 56 ккал/моль и запасанию 20 ккал в двух молях АТФ. [c.104]

    В процессе гликолиза молекула глюкозо-б-фосфата превращается в две молекулы пирувата (1), последний в анаэробных условиях восстанавливается до лактата (2). Третья важная реакция - окислительное декарбоксилирование пирувата, которое завершается образованием ацетил-КоА(С2-фрагмент), который затем вовлекается в цикл трикарбоновых кислот. Через реакцию транса минирования пируват связан с аминокислотами 4), а при окислении глицерола (метаболит липидов) образуются триозы (3-фосфоглицериновый альдегид или 3-фосфодиоксиацетон), которые далее вовлекаются в процесс гликолиза (5). Еще один путь метаболизма пирувата - его карбоксилирование и превращение в оксалоацетат (6). В дрожжах он способен метаболизировать также с образованием этилового спирта (7). Реакция карбоксилирования позволяет пирувату либо включится в процесс глюнонеогенеза, либо образующийся из него оксалоацетат участвует в пополнении пула промежуточных метаболитов цикла трикарбоновых кислот, если клетка испытывает недостаток АТФ. [c.456]

    Второй тип механизмов, регулирующих метаболизм у высших организмов,-это гормональная регуляция (рис. 13-16). Гормонами называют особые химические вещества (химические посредники ), вырабатьшаемые различными эндокринными железами и выделяемые непосредственно в кровь они переносятся кро)вью к другим тканям или органам и здесь стимулируют или тормозят определенные виды метаболической активности. Гормон адреналин, например, секретируется мозговым веществом надпочечника и переносится кровью в печень, где он стимулирует распад гликогена до глюкозы, что вызывает повьппение уровня сахара в крови. Кроме того, адреналин стимулирует распад гликогена в скелетных мьппцах этот процесс приводит к образованию лактата и к запасанию энергии в форме АТР. Адреналин вызывает эти эффекты, присоединяясь к особым рецепторным участкам на поверхности мьппечных клеток или клеток печени. Связывание адреналина служит сигналом этот сигнал передается [c.389]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    В качестве доноров фосфатных групп для ADP важную роль играют два соединения 3-фосфоглицероилфосфат и фосфоенолпируват (табл. 14-5). Оба эти соединения образуются в процессе расщепления глюкозы до лактата (рис. 14-5), сопровождающемся выделением энергии, Об этом процессе, который называют гликолизом, мы будем говорить подробно в следующей главе. Значительная часть свободной энергии, высвобождающейся при расщеплении глюкозы до лактата, запасается в результате образования 3-фосфоглицероилфосфата и фосфоенолпирувата, В клетке эти высокоэнергетические фосфорилированные соединения не подвергаются гидролизу вместо этого их фосфатные группы-при участии специфичных киназ-переносят- [c.420]

    В результате этого процесса одна молекула D-глюкозы превращается в две молекулы лактата (путь углерода). Две молекулы ADP и две молекулы фосфата превращаются в две молекулы АТР (путь фосфатных групп). Четыре электрона (в форме двух гидрид-ионов) переносятся с помощью двух молекул NAD от двух молекул глицеральдегид-З-фосфата на две молекулы пирувата с образованием двух молекул лактата (путь электронов). Процесс гликолиза включает два окислительно-восстановительных этапа, однако суммарного изменения степени окисления углерода в результате этого процесса не происходит. В этом можно убедиться, сравнив эмпирические формулы глюкозы ( gHijOg) и молочной кислоты (СзНбОз). Легко видеть, что соотношение атомов С, Н и О в молекулах двух этих соединений одинаково и, следовательно, превращение глюкозы в молочную кислоту не сопровождается окислением углерода. Тем не менее при анаэробном гликолизе какая-то часть энергии, заключенной в молекуле глюкозы, все же извлекается этой энергии достаточно для того, чтобы обеспечить суммарный выход двух молекул АТР в расчете на каждую расщепленную молекулу глюкозы. [c.455]

    Синтез глюкозы из малых молекул-предшественников идет с особенно большой скоростью в период восстановления после мышечной нагрузки, требующей напряжения всех сил, например после бега на 100 м (дополнение 15-1). При такой интенсивной мышечной работе потребность скелетных мыпщ в АТР неизмеримо возрастает и циркуляторная система уже не успевает доставлять к ним глюкозу и кислород достаточно быстро для того, чтобы эту потребность удовлетворить. В этом случае в качестве резервного топлива используется мышечный гликоген, быстро расщепляющийся в процессе гликолиза с образованием лактата это сопровождается синтезом АТР, который и служит источником энергии для мышечного сокращения. Поскольку в таких условиях кислорода не хватает, лактат не может подвергнуться в мышцах дальнейшим превращениям и диффундирует в кровь, так что его содержание в крови может быть очень высоким. Закончивший стометровку спринтер вначале дышит еще очень тяжело, но постепенно его дыхание выравнивается и через некоторое время вновь становится нормальным. В течение этого периода восстановления возвращается к нормальному низкому уровню также и содержание лактата в крови. Значительная часть избытка кислорода, потребляемого в период восстановления (этот избыток служит мерой так называемой кислородной задолженности), расходуется на образование АТР, который необходим для того, чтобы из лактата, образовавшегося анаэробно во время спринтерского бега, могли быть ресинтезированы глюкоза крови и мышечный гликоген. За время восстановления (а для полного восстановления может потребоваться до 30 мин) лактат удаляется из крови печенью и превращается в глюкозу крови путем глюконеогенеза, который мы описали выше. Глюкоза крови возвращается в мышцы, и здесь из нее образуется гликоген (рис. 20-5). Поскольку на образова- [c.608]

Рис. 20-6. Рубец, занимающий значительную часть брюшной полости коровы, представляет собой как бы огромный ферментёр, в котором бактерии расщепляют целлюлозу ферментативным путем до глюкозы. Эта глюкоза сбраживается затем с образованием лактата, пропио-ната, ацетата и бутирата, которые всасываются в кровь. В печени лактат и пропионат вновь быстро превращаются в глюкозу. Рис. 20-6. <a href="/info/103355">Рубец</a>, занимающий значительную часть <a href="/info/1277445">брюшной полости</a> коровы, представляет собой как бы огромный ферментёр, в котором бактерии расщепляют <a href="/info/218190">целлюлозу ферментативным</a> путем до глюкозы. Эта глюкоза <a href="/info/1004085">сбраживается</a> затем с образованием лактата, пропио-ната, ацетата и <a href="/info/77193">бутирата</a>, которые всасываются в кровь. В печени <a href="/info/81116">лактат</a> и <a href="/info/20457">пропионат</a> вновь быстро превращаются в глюкозу.
    Первую стадию процесса превращения пирувата в валин изучили М. Страссман, А. Томас и С. Вайнхауз [78], выделившие валин из дрожжей, выращенных на среде, которая содержала глюкозу и следовые количества меченого лактата. Распределение двух других углеродных атомов показало, что цепочка из трех углеродных атомов не могла оставаться интактной в ходе этого процесса. Было высказано предположение, что происходила конденсация пирувата с ацет-альдегидом (который возникает при декарбокси-лировании пирувата) с образованием ацетолактата. Далее происходит, по-видимому, миграция метильной группы. Эти изменения, показанные на фиг. 17, соответствовали распределению в этих опытах. [c.47]


Смотреть страницы где упоминается термин Лактат образование из глюкозы: [c.620]    [c.68]    [c.129]    [c.346]    [c.347]    [c.440]    [c.471]    [c.472]    [c.477]    [c.602]    [c.610]    [c.722]    [c.276]    [c.281]    [c.407]   
Биохимия Том 3 (1980) -- [ c.345 ]




ПОИСК





Смотрите так же термины и статьи:

Глюкоза и образование АТР



© 2025 chem21.info Реклама на сайте