Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рекомбинантная ДНК, использование

    Существуют и другие, более близкие опасности. В 1974 г. Комитет по рекомбинантным молекулам ДНК Национальной Академии наук США обратился с призывом о прекращении экспериментов в двух направлениях, которые могут представить опасность для человечества в целом [269]. В своем обращении комитет подчеркнул, что использование Е. соИ для клонирования рекомбинантных молекул может оказаться опасным, поскольку эти бактерии обитают в кишечнике человека и могут обмениваться генетической информацией с бактериями, патогенными для человека. Комитет считает, что следует добровольно отказаться от исследований в двух указанных им направлениях, которые могут привести к случайному включению в хромосому генов, обусловливающих устойчивость к антибиотикам и к образованию токсинов, а также к развитию опухолей. Особые предостережения были высказаны в отношении любых планов, направленных на сцепление фрагментов ДНК животных с ДНК бактериальных плазмид или фагов. Предполагается, что контроль за проведением такого рода исследований должен осуществляться различными организациями, субсидирующими биохимические исследования [269]. [c.296]


    Рекомбинантные клоны могут быть идентифицированы и по синтезируемому ими продукту. Но чаще приходится идентифицировать непосредственно нуклеотидную вставку с использованием методов гибридизации. С этой целью бактериальные колонии выращивают на нитроцеллюлозных фильтрах, помещенных на чашку Петри с питательной средой. Далее приготовляют реплики к фильтру с исходными колониями прижимают свежий нитроцел-люлозный фильтр, который затем переносят на чашку Петри с плотной питательной средой, где образуются колонии, идентичные первым. [c.121]

    Суммируя, можно сказать, что экспрессирующие векторы млекопитающих столь же универсальны и эффективны, как и векторы для других эукариотических систем экспрессии, если речь идет о получении аутентичных рекомбинантных белков для исследовательских и медицинских целей. Однако промышленный синтез рекомбинантных белков с использованием модифицированных клеток млекопитающих обходится слишком дорого. В этом случае предпочтительны менее дорогие системы экспрессии, за исключением тех ситуаций, когда [c.153]

    С развитием технологии рекомбинантных ДНК и разработкой способов получения моноклональных антител, а также с установлением структуры и функций иммуноглобулинов появился интерес к использованию специфических антител для лечения различных заболеваний. Работа с генами антител облегчается тем, что отдельные домены молекулы антитела выполняют разные функции. [c.224]

    Разработана специальная система, позволяющая избежать прерывания рамки считывания генов ВКО при встраивании чужеродного гена. При этом отпадает необходимость в использовании селективных маркеров, поскольку каждый образующий бляшку рекомбинантный вирус бу- [c.240]

    Использование рекомбинантных микроорганизмов для получения коммерческих продуктов [c.247]

Рис. 12.7. Схематичное изображение биореактора, в котором можно было бы осуществлять синтез индиго с использованием рекомбинантных клеток Е. соИ. Клетки иммобилизованы на частицах твердого матрикса. В реактор непрерывно подается субстрат (триптофан) и непрерывно выводится продукт (индиго). Скорость переноса вещества через реактор лимитируется скоростью превращения субстрата в продукт. Рис. 12.7. Схематичное изображение биореактора, в котором можно было бы осуществлять <a href="/info/136917">синтез индиго</a> с использованием рекомбинантных клеток Е. соИ. <a href="/info/759740">Клетки иммобилизованы</a> на <a href="/info/40536">частицах твердого</a> матрикса. В <a href="/info/25631">реактор непрерывно</a> подается субстрат (триптофан) и <a href="/info/904486">непрерывно выводится</a> продукт (индиго). <a href="/info/841868">Скорость переноса вещества</a> <a href="/info/921893">через реактор</a> <a href="/info/528703">лимитируется скоростью</a> <a href="/info/1380498">превращения субстрата</a> в продукт.

    Есть еще один аспект, касающийся крупномасштабной ферментации, который не имеет отнощения к технической стороне процесса, а касается того, используются ли при этом рекомбинантные микроорганизмы. В большинстве стран крупномасштабное культивирование рекомбинантных микроорганизмов сопряжено с необходимостью соблюдения определенных правил и инструкций. Хотя большинство рекомбинантных микроорганизмов не представляют никакой опасности, важно не допустить их случайного попадания в среду. Для этого используются надежные системы, предотвращающие утечку живых рекомбинантных организмов или ограничивающие их распространение, если утечка все же произошла. Кроме того, перед окончательным удалением из установки все рекомбинантные микроорганизмы должны быть инактивированы в соответствии с определенными инструкциями. Использованную культуральную среду тоже необходимо проверять на наличие в ней жизнеспособных микроорганизмов, чтобы исключить их попадание в окружающую среду. [c.356]

    Использованный в этой работе эрлифтный ферментер с двойной наружной рециркуляцией (рис. 16.5) позволил упростить регуляцию относительных рабочих объемов ферментеров, а также повысить гибкость системы (обеспечивать разные условия роста для разных популяций рекомбинантных клеток). При синтезе ДНК-лига-зы наилучшие результаты были получены при ежеминутном поступлении примерно 33 мл клеточной суспензии из первого биореактора во второй. Это эквивалентно всего 0,67% объема биореактора, где осуществлялась индукция, что обеспечивало практически мгновенный подъем температуры всей поступающей суспензии с 30 [c.360]

    Создание мышей, которые синтезировали бы только человеческие антитела, - это примечательный пример трансгеноза с помощью YA . Как отмечалось в гл. 10, моноклональные антитела можно использовать для лечения некоторых заболеваний человека. Однако получить человеческие моноклональные антитела практически невозможно. К сожалению, и моноклональные антитела грызунов иммуногенны для человека. Чтобы очеловечить существующие моноклональные антитела грызунов, были разработаны сложные стратегии с использованием рекомбинантных ДНК. В результате этих трудоемких процедур удалось получить Fv- и Fab-фрагмен-ты, зачастую обладающие каким-то сродством к специфическому антигену. Возможно, технологического прорыва удастся достичь, если использовать для получения полноразмерных человеческих антител более доступный метод с использованием гибридом. [c.429]

    В книге изложены традиционные и новейшие технологии, основанные на достижениях генной и клеточной инженерии. Рассмотрены прогрессивные методы биотехнологии, такие, как получение рекомбинантной ДНК, трансгенных растений и животных, культивирование клеток и тканей, клонирование, обеспечение сверхпродукгивности объектов. Значительное внимание уделено вопросам использования биотехнологических процессов для решения актуальных социально-экономических проблем — энергетических, сырьевых, медицинских, экологических, сельскохозяйственных. Обобщены главные достижения биотехнологии в современном производстве во многих разделах обсуждаются прогнозы ее развития. [c.3]

    Вышесказанное можно проиллюстрировать следующими примерами. В США осуществлен метод микроинъекции ДНК, отвечающий за экспрессию 3-лактоглобулина, который способен продуцироваться только в молочных железах животных. В Эдинбурге в 1992 г. были вьшедены трансгенные овцы с геном а-1-антитрипсина человека и 3-глобулиновым промотором. Содержание этого белка у разных трансгенных овец составляло от 1 до 35 г/л, что соответствует половине всех белков в молоке. При таком уровне продукции белка может быть получено около 10 кг трансгенного белка от одного животного в год, что достаточно для 50 пациентов при лечении эмфиземы легких. Обычно выход рекомбинантных белков в системах с использованием культуры клеток составляет около 200 мг/л, а у трансгенных животных он может повышаться до 1 л. Следует заметить, что создание клеточных культур и их выращивание в промышленных реакторах, а также выведение трансгенных животных и их обслуживание — дорогие и сложные процедуры. Однако трансгенные животные легко размножа- [c.131]

    Векторы на основе ДНК-содержанщх вирусов растений. Вирусы можно рассматривать как разновидности чужеродной нуклеиновой кислоты, которые реплицируются и экспрессируются в клетках растений. Подавляющее большинство фитовирусов в качестве носителя генетической информации содержат РНК. Только 1 — 2 % вирусов, инфицирующих растения, относятся к ДНК-содержа-щим. Именно эти вирусы удобны для использования в технологии рекомбинантных ДНК, а также в качестве векторов. [c.147]

    Книга состоит из четырех частей. В первой из них четко и ясно изложены основы молекулярной биологии, во второй речь идет о молекулярной биотехнологии микроорганизмов, в третьей - о биотехнологии эукариотических систем, Б том числе человека (молекулярная генетика человека и генная терапия). Особый интерес для российского читателя представляет четвертая часть, посвященная контролю и патентованию в области молекулярной биотехнологии. Эти вопросы почти не затрагиваются ни в учебниках, ни в образовательном процессе в нашей стране, хотя в биотехнологии, как и в любой прикладной науке, новые разработки дают дивиденды только в том случае, когда они защищены патентом. Авторы обсуждают законодательную базу использования генноинженерных продуктов в пищевой и фармацевтической промышленности, применения рекомбинантных организмов в сельском хозяйстве, нормативные акты, относящиеся к предварительным испытаниям этих организмов, требования, предъявляемые к ним при крупномасштабном применении. Детально рассматриваются правила патентования впервые секвениро- [c.5]


    Для получения гетерологичных рекомбинантных белков с клонированной эукариотической комплементарной ДНК (кДНК) обычно используются прокариотические системы экспрессии. Однако в некоторых случаях эукариотические белки, синтезированные в бактериях, оказываются нестабильными или биологически неактивными. Кроме того, как бы тщательно ни проводилась очистка, конечный продукт может быть загрязнен токсичными веществами или веществами, вызывающими повышение температуры у человека и животных (пирогенами). Чтобы решить эти проблемы, для получения рекомбинантных белков, предназначенных для использования в медицине, были разработаны эукариотические системы экспрессии. Такие белки должны быть идентичны природным по своим биохимическим, физическим и функциональным свойствам. Неспособность прокариот синтезировать аутентичные варианты белков обусловлена в основном отсутствием у них адекватных механизмов внесения специфических посттрансля-ционных модификаций. [c.135]

    Используя эписомный экспрессирующий вектор с сигнальной последовательностью а-фак-тора, удалось получить правильным образом модифицированный, биологически активный белок гирудин он синтезировался и секретировался щтаммом S. erevisiae. Ген гирудина был выделен из клеток беспозвоночного — пиявки Hirudo medi inalis. Этот белок является мощным антикоагулянтом и не вызывает нежелательных иммунологических реакций у человека. Его можно получать в активной форме в больших количествах, что упростило исследование его способности разрушать сгустки венозной крови и устранять другие проявления тромбоза. К сожалению, клинические исследования 12 142 больных, у 4131 из которых имелись сердечнососудистые заболевания, выявили лишь незначительные преимущества рекомбинантного гирудина перед гепарином. Эти преимущества не могут компенсировать высокую стоимость рекомбинантного гирудина, так что его широкое использование в клинике представляется маловероятным. [c.140]

    Свойства любого белка зависят от его конформации, которая в свою очередь определяется аминокислотной последовательностью. Некоторые аминокислоты в полипептидной цепи играют ключевую роль в определении специфичности, термостабильности и других свойств белка, так что замена единственного нуклеотида в гене, кодирующем белок, может привести к включению в него аминокислоты, приводящему к понижению его активности, либо, напротив, к улучшению каких-то его специфических свойств. С развитием технологии рекомбинантных ДНК появилась возможность производить специфические замены в клонированных генах и получать белки, содержащие нужные аминокислоты в заданных сайтах. Такой подход получил название направленного мутагенеза. Как правило, интересующий исследователя ген клонируют в ДНК фага M13. Одноцепочечную форму ДНК этого фага копируют с использованием олигонуклеотидного праймера, синтезированного таким образом, чтобы в ген-мишень был встроен определенный нуклеотид. Затем трансформируют двухцепочечными ДНК M13 клетки Е. соИ. Часть образующихся в клетках фаговьгх частиц несет ген, содержащий нужную мутацию. Такие частицы идентифицируют, встраивают мутантный ген в экспрессирующий вектор, синтезируют белок и определяют его активность. Вносить изменения в клонированные гены можно также с помощью плазмид или ПЦР. Обычно заранее не известно, какую [c.175]

    Зонды получают разными способами. Один из них состоит в следующем. ДНК патогенного микроорганизма расщепляют с помощью рестрицирующей эндонуклеазы и клонируют в плазмидном векторе. Затем проводят скрининг рекомбинантных плазмид с использованием геномной ДНК как патогенного, так и непатогенного штаммов. Те плазмиды, которые содержат последовательности, гибридизующиеся только с ДНК патогенного штамма, составляют основу видоспецифичных зондов. После этого проводят ряд дополнительных гибридизаций с ДНК, выделенными из различных организмов, чтобы удостовериться, что потенциальные зонды не дают с ними перекрестной гибридизации. Для определения чувствительности метода каждый из зондов проверяют также на модельных образцах, в том числе и на смешанных культурах. [c.188]

    До появления технологии рекомбинантных ДНК многие лекарственные препараты на основе белков человека удавалось получать только в небольших количествах, их производство обходилось очень дорого, а механизм биологического действия иногда был недостаточно изучен. Предполагалось, что с помощью новой технологии можно будет получать весь спектр таких препаратов в количествах, достаточных как для их эффективного тестирования, так и для применения в клинике. И эти ожидания оправдались. На сегодняшний день клонировано более 400 генов (в основном в виде кДНК) различных белков человека, которые в принципе могут стать лекарственными препаратами. Большинство этих генов уже экспрессированы в клетках-хозяевах, и сейчас их продукты проходят проверку на возможность применения для лечения различных заболеваний человека (табл. 10.1). Впрочем, хотя более 30 таких биотехнологических препаратов и получило одобрение в США (табл. 10.2), пройдет еще несколько лет, прежде чем они будут рекомендованы для широкого использования и поступят в продажу вначале их подвергнут проверке на животных и проведут тщательные клинические испытания. Однако фармацевтические фирмы уже сейчас проявляют к ним интерес. По подсчетам специалистов, ежегодный объем мирового рынка лекарственных препаратов на основе белков человека составляет около 150 млрд. долларов и постоянно растет. Объем мирового рынка лекарственных средств на основе рекомбинантных белков увеличивается на 12—14% в год и к 2000 г. составит примерно 20 млрд. долларов. [c.204]

    Для выявления рекомбинантных клонов, синтезирующих экзоглюканазу, использовали иммунный скрининг, позволяющий идентифицировать белок-мишень с помощью специфичных к нему антител секреция белка при этом необязательна. Рекомбинантные клетки лизи-ровали in situ (парами хлороформа), перенесли цитоплазматические белки на найлоновый или нитроцеллюлозный фильтр и провели иммунологический тест. Использованный при этом метод реплик позволил сохранить жизнеспособные клетки для дальнейших исследований. [c.298]

    Растения дают большое количество биомассы, а выращивание их не составляет труда, поэтому разумно было попытаться создать трансгенные растения, способные синтезировать коммерчески ценные белки и химикаты. В отличие от рекомбинантных бактерий, которых культивируют в больших биореакторах (при этом необходимы высококвалифицированный персонал и дорогостоящее оборудование), для выращивания сельскохозяйственных культур не нужно больших средств и квалифицированных рабочих. Основная проблема, которая может возникнуть при использовании растений в качестве биореакторов, будет связана с выделением продукта введенного гена из массы растительной ткани и сравнительной стоимостью производства нужного белка с помощью трансгенных растений и микроорганизмов. Уже созданы экспериментальные установки по получению с помощью растений моноклональных антител, функциональных фрагментов антител и полимера поли-Р-гидроксибутира-та, из которого можно изготавливать материал, подверженный биодеградации. [c.412]

Рис. 19.1. Получение линии трансгенных мышей с использованием ретровирусных векторов. Эмбрион, обычно находящийся на стадии 8 клеток, инфицируют рекомбинантным ретровирусом, несущим трансген. Самки, которым бьи имплантирован эмбрион ( суррогатные матери), производят на свет трансгенное потомство. Для идентификации мьщ1ат, несущих трансген в клетках зародьшгевой лршии, проводят ряд скрещиваний. Рис. 19.1. <a href="/info/1875859">Получение линии трансгенных</a> мышей с <a href="/info/1549593">использованием ретровирусных векторов</a>. Эмбрион, обычно находящийся на стадии 8 клеток, инфицируют <a href="/info/1409454">рекомбинантным ретровирусом</a>, несущим трансген. Самки, которым бьи имплантирован эмбрион ( суррогатные матери), производят на свет трансгенное потомство. Для идентификации мьщ1ат, несущих трансген в клетках зародьшгевой лршии, проводят ряд скрещиваний.
    Впервые возможность переноса ДНК при помощи микроинъекций в пронуклеус оплодотворенной яйцеклетки мыщи была проиллюстрирована Дж. Гордоном и др. В этом эксперименте в несколько сотен оплодотворенных яйцеклеток инъецировали плазмидный вектор pBR322, содержащий ген тимидинкиназы вируса простого герпеса (HSV) и часть генома обезьяньего вируса 40 (SV40). Из 78 потомков, рожденных приемными матерями, два содержали плазмидную ДНК. Авторы сделали вывод, что эти данные свидетельствуют о возможности использования рекомбинантных плазмид в качестве вектора для введения чужеродных генов непосредственно в эмбрионы мыщей, которые сохраняют эти гены в ходе развития . К сожалению, плаз- [c.428]

    Никаких специфичных для птиц ES-клеток не обнаружено, поэтому подход, основанный на их использовании, для птиц неприменим. Более перспективным представляется метод с использованием рекомбинантных эмбриональных клеток. Он состоит в следующем. Выделяют клетки бластодермы из куриного эмбриона, трансфицируют их с помощью катионных липидов (липосом), связанных с трансгенной ДНК (липосомная трансфекция), и повторно вводят в подзародыше-вую область свежеотложенных яиц (рис. 19.14). Часть потомков будет нести в каком-то небольшом количестве клетки донора таких животных называют химерами. У некоторых химер клетки, произошедшие от трансфицированных клеток, могут образовывать линии зародышевых клеток, и после нескольких раундов скрещиваний таких химер можно получить линии трансгенных животных. Чтобы увеличить вероятность создания химер, несущих чужеродные гены в клетках зародышевой линии, число донорских клеток в химерах можно увеличить облучением эмбрионов реципиента перед введением в них трансфицированных клеток (540-660 рад в течение 1 ч). Под действием облучения некоторые (но не все) клетки бластодермы погибнут, и соотношение между трансфицированными клетками и клетками реципиента увеличится в пользу первых. По-видимому, таким образом можно получать трансгенных цыплят, хотя и с малой эффективностью. [c.438]

    По мере истощения природньгх рыбных запасов все большую роль будет приобретать разведение рыбы в искусственных условиях. Основная цель исследований в этой области — создание рекомбинантных рыб путем трансгеноза. До настоящего времени трансгены вводили микроинъекцией ДНК или электропорацией оплодотворенных яйцеклеток различных видов рыб — карпа, зубатки, форели, лосося и т. д. Поскольку у рыб пронуклеус в оплодотворенной яйцеклетке плохо различим в обычный микроскоп, линеаризованную трансгенную ДНК вводят в цитоплазму оплодотворенных яйцеклеток или клеток эмбрионов, достигших стадии четырех бластомеров. Эмбриогенез у рыб протекает в водной среде вне организма, поэтому в имплантации нет необходимости. Все дальнейшие процессы могут протекать в резервуарах с регулируемой температурой. Выживаемость эмбрионов рыб после микроинъекций довольно высока, от 35 до 80%, а доля трансгенных потомков колеблется от 10 до 70%. Трансген можно обнаружить с помощью ПЦР с использованием либо препаратов эритроцитов зародышей, либо суммарной ДНК. Скрещивая трансгенных рыб, можно вывести трансгенные линии. [c.438]

    После того как рекомбинантный аденовирус инфицирует клетку-мищень, его ДНК проникает в ядро, где и происходит экспрессия терапевтического гена. Рекомбинантная ДНК не интегрирует в хромосому и сохраняется непродолжительное время, поэтому при проведении генотерапии с использованием аденовирусных векторов необходимо вводить их с определенной периодичностью. [c.494]


Смотреть страницы где упоминается термин Рекомбинантная ДНК, использование: [c.301]    [c.123]    [c.137]    [c.143]    [c.149]    [c.150]    [c.231]    [c.255]    [c.322]    [c.366]    [c.379]    [c.492]   
Генетика человека Т.3 (1990) -- [ c.171 ]




ПОИСК







© 2025 chem21.info Реклама на сайте