Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм действия некоторых ферментов

    В зависимости от механизма действия различают ферменты с относительной (или групповой) и абсолютной специфичностью. Так, для действия некоторых гидролитических ферментов наибольщее значение имеет тип химической связи в молекуле субстрата. Например, пепсин в одинаковой степени расщепляет белки животного и растительного происхождения, несмотря на то что эти белки существенно отличаются друг от друга как по химическому строению и аминокислотному составу, так и по физико-химическим свойствам. Однако пепсин не расщепляет ни углеводы, ни жиры. Объясняется это тем, что точкой приложения, местом действия пепсина является пептидная —СО—КН-связь. Для действия липазы, катализирующей гидролиз жиров на глицерин и жирные кислоты, подобным местом является сложноэфирная связь. Аналогичной групповой специфичностью обладают трипсин, химотрипсин, пептидазы, ферменты, гидролизующие а-гликозидные связи (но не 3-гликозидные связи, имеющиеся в целлюлозе) в полисахаридах, и др. Обычно эти ферменты участвуют в процессе пищеварения, и их групповая специфичность, вероятнее всего, имеет определенный биологический смысл. Относительной специфичностью наделены также некоторые внутриклеточные ферменты, например гексокиназа, катализирующая в присутствии АТФ фосфорилирование почти всех гексоз, хотя одновременно в клетках имеются и специфические для каждой гексозы ферменты, выполняющие такое же фосфорилирование (см. главу 10). [c.142]


    Известно несколько различных семейств протеиназ, причем не все они обязательно содержат в активном центре серин. В одно из семейств входит пепсин желудка и родственные ферменты, например реннин из четвертого желудка (сычуга) теленка. Реннин вызывает быстрое свертывание молока и широко применяется в сыроварении. К этому же семейству относятся некоторые внутриклеточные катепсины и протеиназы различных грибов. Необычным свойством пепсинового семейства протеиназ является то, что они наиболее активны в интервале pH от 1 до 5. Это свойство делает понятным, почему серин и гистидин не входят в состав активного центра этих ферментов. Считают, что у кислых протеиназ в механизме двойного замещения роль нуклеофила выполняет карбоксилат-ион, а донором протона по отношению к уходящей группе служит вторая карбоксильная группа. Таким образом, механизм действия пепсина подобен механизму действия лизоцима. [c.113]

    Ферментативный, или кислотный, гидроксил гликозидных связей также зависит от формы самих гликозидов и объяснение механизма действия некоторых ферментов на гликозиды может быть дано на основе конформационных отношений. [c.75]

    МЕХАНИЗМ ДЕЙСТВИЯ НЕКОТОРЫХ ФЕРМЕНТОВ [c.237]

    Механизм действия некоторых антибиотиков состоит в блокировании синтеза белка. Можно выделить мутантов, устойчивых к таким антибиотикам. Во многих случаях эти мутации вызывают изменения рибосомных белков (или ферментов, принимающих участие в синтезе белка). Устойчивость к антибиотикам обусловлена мутациями, затрагивающими 5 белков 308-субчастицы и 4 белка 508-субчастицы. Используя эти мутантные варианты, можно исследовать функцию данного белка в рибосоме. [c.111]

    В данной главе рассмотрены общие аспекты субстратной специфичности, предполагаемые механизмы, обеспечивающие значительное увеличение скоростей реакций, природа активных центров и механизмы действия некоторых ферментов, структурно-функциональные характеристики которых были изучены достаточно детально, что позволило постулировать весьма обоснованные механизмы. Поскольку перечисленные вопросы слишком обширны, иллюстрация общих принципов осуществляется с помощью только отдельных примеров. В то же время исключительно интересные химические превращения, осуществляемые при действии ферментов, неоднократно рассматриваются в последующих главах. [c.281]

    Обращает на себя внимание огромное различие в константах и скорости прямой и обратной реакции первой стадии процесса. Силы, действующие при образовании соединений фермент — субстрат, неодинаковы во всех случаях. Возникновение ковалентных связей между ферментом и субстратом, казавшееся некоторым исследователям маловероятным, несомненно, имеет место для значительного числа ферментов (например, трансфераз). Большую роль играют различные мостики солевые, получающиеся за счет чисто электростатических сил, и водородные, возникающие при образовании водородных связей. Взаимодействие белковых цепей друг с другом, силы притяжения между цепями дезоксирибонуклеиновой кислоты, обусловленные связями этого типа, иллюстрируют их значение в биохимии. Механизм действия протеолитических ферментов на их субстраты пептидной природы, вероятно, основан на возникновении водородных связей. [c.123]


    История развития науки о ферментах тесно связана с общим развитием биологических и химических дисциплин. Так, например, выделение первого по времени фермента, диастаза из солода (1833), не случайно совпало с работами о катализе газов твердыми телами, а также об образовании эфира из спирта при действии серной кислоты. Успехи коллоидной и белковой химии сделали возможными препаративные работы по выделению ферментов, получению их в кристаллическом виде и выяснению строения и механизма действия некоторых из них. Невозможно здесь перечислить огромное количество разнообразных ферментов с указанием лиц, потрудившихся над разработкой ферментологии. Но необходимо назвать хотя бы главнейших русских исследователей в этой области. [c.335]

    Конечно, строение активного центра и механизмы действия разных ферментов различны, они соответствуют особенностям строения субстрата и типу реакции. Однако приведенный пример иллюстрирует некоторые общие черты, характерные для ферментативного катализа. Эти черты перечислены ниже. [c.90]

    Ферменты — это очень сложные соединения, и до сих пор детально изучены механизмы действия лишь некоторых из них. Именно поэтому возникает необходимость в модельных системах. К функциональным группам полипептидных цепей, участвующим обычно в каталитических процессах, относятся имидазольный остаток, алифатические и ароматические гидроксильные группы, карбоксильные группы, сульфгидрильные группы и аминогруппы. [c.264]

    При введении в человеческий организм больших доз спирта некоторые ферменты теряют свои активные центры. Предложите возможный механизм действия спирта на молекулярном уровне. [c.469]

    Механизмы метаболических процессов очень напоминают механизмы реакций, проводимых в лабораторных условиях, с тем отличием, что если в лаборатории часто работают прн повышенных температурах и давлении, с безводными (часто ядовитыми) растворителями, с сильными кислотами и основаниями и с нетипичными для природы реагентами, то метаболические процессы протекают при весьма умеренных условиях в разбавленных водных растворах в интервале температур от 20 до 40 °С при pH от 6 до 8 и с участием чрезвычайно эффективных катализаторов — ферментов. Можно сказать, что каждая ступень метаболического процесса катализируется специфическим ферментом. Ферменты представляют собой вещества белковой природы их каталитическое действие оказывает влияние не на положение равновесия реакции, а на ее скорость, которая очень сильно увеличивается — часто на несколько порядков по сравнению со скоростью реакции, проводимой в лабораторных условиях. В состав некоторых ферментов входят коферменты, имеющие небелковый характер. Подвергающийся превращению субстрат сначала связывается с активным центром фермента, поблизости от которого расположен кофер-мент. При этом реагирующая группа субстрата и кофермент так сориентированы в пространстве, что реакция между ними протекает практически мгновенно. Затем прореагировавший субстрат отделяется от активного центра фермента, а измененный кофермент регенерируется под действием другого субстрата. Если в ферменте нет кофермента, то два субстрата непосредственно взаимодействуют в активном центре. [c.180]

    В последние годы все чаще появляются публикации [193—196], из которых следует целесообразность разработки новых катализаторов, моделирующих ферменты. Изучение механизма действия последних ведется уже несколько десятилетий, и на основании полученного обширного экспериментального материала сформулированы некоторые принципы этого механизма. Показано, что в основе ферментативного катализа лежат три основные фактора концентрационный эффект, ориентационный эффект, полифункцио-нальный катализ. [c.179]

    Рассмотрим какую-нибудь химическую реакцию, свойственную практически любой живой клетке (таких реакций очень много). Выделим фермент, катализирующий эту реакцию, из тканей разных организмов при этом мы, по всей вероятности, обнаружим, что выделенные ферменты имеют сходные свойства и механизм действия, но несколько различаются по аминокислотному составу. Обычно видовые различия касаются только внешней формы молекулы фермента, а механизм каталитического действия остается в принципе тем же. Но в некоторых случаях видовые вариации затрагивают структуру активного центра фермента, а это уже влечет за собой изменения в процессах обмена веществ. Особенности метаболизма живых существ приводят к различиям в их форме и поведении. Возможно, причину разницы между лошадью и коровой нужно искать в совокупности едва заметных особенностей в структуре их ферментов и других белков. [c.12]


    Механизм действия сериновых протеиназ в настоящее время понят лучше механизма любого другого типа ферментов и может служить иллюстрацией некоторых важных моментов, касающихся ферментативного катализа. Гидролиз амида может показаться не слишком сложной реакцией химику-органику. В случае же ферментативного катализа для обеспечения успешного протекания реакции необходимо очень строгое обеспечение тех стадий, которые химик может счастливо игнорировать. В противном случае будет происходить замедление реакции. Даже механизм, приведенный на схемах (28) — (34) и насчитывающий 9 отдельных стадий, является, безусловно, упрощенным. [В качестве иллюстрации можно отметить, что в последних исследованиях механизма действия химотрипсина с использованием методов быстрой кинетики в водном диметилсульфоксиде при —90°С показано наличие четырех процессов, предшествующих образованию тетраэдрического интермедиата см. схему (28) . Первым из этих процессов является связывание субстрата, остальные, по-видимому, представляют собой индуцированные субстратом конформационные изменения в ферменте, необходимые для обеспечения правильной стереохимии катализа] [63]. Нетрудно понять, почему для катализа распада такой высоко энергетической частицы, как тетраэдрический интермедиат, требуется особое обеспечение такие стадии могут в конце концов быть скоростьопределяющими в самых простых реакциях. Однако в связи с тем, что для эффективного протекания ферментативного катализа необходимы очень [c.497]

    Остановимся более подробно на катализе сериновыми протеазами. Эти ферменты отличаются лишь некоторыми деталями построения их активных центров, в частности, механизмом сорбции боковой субстратной группы (см. рис. 11). Обш,ее же в механизме действия этих ферментов — это сорбция а-ациламидного субстратного фрагмента при образовании им водородной связи с карбонильной группой полипептидной цепи фермента 23, 25]  [c.47]

    В разд. 24.1.3 мы видели, как каталитические механизмы, по которым, как полагают, действуют некоторые ферменты, могут в ряде случаев наблюдаться в простых системах. Так, общий основной катализ имидазолом, например, гидролиза Л ,0-диаце-тилсеринамида (36) [53] представляет собой модель реакции химотрипсина со сложноэфирным субстратом. В ионной реакции этого типа переходное состояние каталитической реакции стабилизуется за счет делокализации заряда на нескольких центрах. В этом случае фиксация положительного заряда на нуклеофильной гидроксильной группе нейтрализуется делокализацией на азо-тах имидазола. В результате происходит понижение энергии активации реакции за счет затрат повышенной энтропии активации (см. разд. 24.1.22). Данные табл. 24.1.4 иллюстрируют это положение мономолекулярная реакция отщепления 2,4-динитрофен-оксида от соответствующего фосфатного моноэфира-дианиона имеет высокую энтальпию активации, однако реакция протекает достаточно легко из-за ее весьма благоприятной энтропии активации. Нуклеофильный катализ этой реакции пиридином характеризуется несколько меньшей энтальпией активации, так как азот пиридина может принимать на себя положительный заряд в переходном состоянии, в результате чего удается избежать образования высокоэнергетического интермедиата — метафосфата [РОЛ- Тем не менее участие молекулы пиридина отражается в виде намного менее выгодной энтропии активации. Близкие активационные параметры наблюдаются и в случае нуклеофильного катализа ацетатом гидролиза триэфира (73) также бимолекулярной реакции. Нейтральный гидролиз (73) проходит, как полагают, по механизму тримолекулярного общего основного катализа (см. табл. 24.1.4). Эта реакция протекает относительно медленно исключительно за счет энтропийного вклада, еще менее выгодного в этом случае. Энтальпия активации, впрочем, для тримолекулярного процесса несколько ниже, поскольку делокализация заряда на трех молекулах еще больше уменьшает его фиксацию в каком-либо одном центре. [c.522]

    Тщательное исследование рН-функций оказалось весьма ценным при изучении механизма действия гидролаз. Возможность изолировать индивидуальные кинетические стадии с помощью методов остановленного потока, стационарной кинетики и релаксационной техники позволила получить вполне четкие результаты. Наиболее определенные данные при использовании некоторых субстратов были получены для трипсина и химотрипсина [2,3]. Именно с помощью такого подхода впервые было уста-йовлено участие остатков гистидина в механизме действия химотрипсина на стадиях ацилирования и деацилирования. Некоторые данные стационарной кинетики привели к полезным выводам о механизме действия негидролитических ферментов. Можно думать, что этот метод анализа механизмов ферментативных реакций будет быстро развиваться. Группа Альберти [4] провела очень тщательное измерение величин р/С и энтальпии ионизации связывающих группировок фумаразы. Данные о [c.217]

    Явление конкурентного ингибирования помогает понять механизм действия некоторых лекарственных препаратов, в частности сульфаниламидов. Цель химиотерапии — уничтожить при помощи тех или иных химических препаратов возбудителя болезни, не повреждая при этом ткани организма-хозяина. Первыми такими препаратами были сульфаниламиды, антибактериальное действие которых было обнаружено в 30-е годы XX в. Во время второй мировой войны их щироко применяли для борьбы с раневыми инфекциями. Сульфаниламиды по своей химической природе близки к парааминобензойной кислоте (ПАБК) — необходимому фактору роста многих патогенных бактерий. ПАБК требуется бактериям для синтеза фолиевой кислоты, которая служит у них одним из кофакторов ферментов. Сульфаниламиды ингибируют один из ферментов, участвующих в синтезе фолиевой кислоты из ПАБК. [c.163]

    Усцехи, достигнутые в последние годы при изучении факторов, влияющих на скорость ферментативной реакции, а также выделение промежуточных фермент-субстратных комплексов и изучение их химических и физических свойств позволили предложить несколько теорий, объясняющих механизм действия некоторых групп ферментов. [c.237]

    Подробное исследование механизма действия этих ингибиторов позволило предположить, что их биологическая активность связана прежде всего с наличием остатка р-гидроксилакгона, очевидно из-за структурного сходства этого фрагмента с естественным субстратом фермента 279. Это предположение было положено в основу дизайна ряда более достушшх синтетических аналогов природных ингибиторов. Некоторые из них, например 282, показали очень [c.511]

    Hue и изучение свойств и характера действия соответствующих ферментов, катализирующих сложные лроцес-СБг синтеза порфиринов, способствовали дальнейшему освещению механизма действия некоторых токсических веществ, в частности свинца. [c.18]

    В 1960 г. американские исследователи показали, что нитрогена-за сохраняет свою активность в бесклеточных экстрактах lostridium pasteurianum. Это послужило толчком для начала активных исследований биохимии азотфиксации, структуры и механизма действия нитрогеназы. К 1981 г. нитрогеназа была выделена из 36 видов микроорганизмов. Она считается одним из наиболее сложных ферментов, использующих простые субстраты. Кроме азота нитрогеназа может восстанавливать ацетилен, цианистый водород, закись азота и некоторые другие соединения. Восстановление ацетилена в этилен позволило разработать надежный тест для обнаружения азотфиксирующей активности. Непременное условие работы нитрогеназы — ее защита от кислорода, который ингибирует не только активность нитрогеназы, но и ее биосинтез. [c.151]

    Используя некоторые хелатообразующие соединения (например, этилендиаминтетрауксусную кислоту, 1, 10-фенантролин и др.), удалось не только выяснить механизм действия многих ферментов и природу активирующего действия ионов металлов, но и открыть существование новой группы ферментов — металлофла-вопротеидов, о чем уже говорилось в главе Дыхание . [c.411]

    На практике многие хорошо известные лекарственные препараты обладают свойством ингибировать тот или иной фермент, но только некоторые из них предназначены именно для этой цели. Познание структуры и механизма действия ферментов заметно продвинулось вперед за последние два десятилетия. В связи с этим поиск специфических ингибиторов ферментов с целью их использования в фармакологии стал еще более заманчивым. Чтобы такие поиски увенчались успехом, необходимо получить по возможности больше сведений о специфичности фермента, а также о второстепенных центрах связывания вблизи его активного центра, если таковые существуют. Интенсивные исследования в этом направлении привели к разработке новой интересной группы необратимых ингибиторов ферментов активируемых ферментом необратимых ингибиторов, или, как их иначе называют, самоуничтожающихся инактиваторов ферментов [313, 318, 319]. Смысл выражения са-моуничтожающийся инактиватор не совсем определен, но тем не менее это выражение используется. [c.452]

    Что же касается механизма реакции Пастера, то он остается еще недостаточно выясненным, хотя для его объяснения существует ряд гипотез. Одна из этих гипотез указывает на то, что прекращение гликолиза при аэробных условиях является скорее кажущимся, чем действительным. В присутствии кислорода в некоторых тканях, например в мышечной, часть образующейся при гликолизе молочной кислоты окисляется до углекислого газа и воды с освобождением энергии, которая используется частично для ресинтеза из оставшейся части молочной кислоты гликогена. Следовательно, в этом случае в тканях образование молочной кислоты не прекраш.ается в присутствии кислорода. Сбережение запасов гликогена достигается тем, что некоторая, и при этом большая, часть образовавшейся молочной кислоты в присутствии кислорода снова превращается в гликоген. Другие гипотезы объяс 1яют реакцию Пастера тем, что кислород прекращает гликолиз, воздействуя на ферменты, катализирующие тот пли иной этап гликолиза, прекращая, или тормозя, их действие. Некоторые ферменты гликолиза содержат важные для проявления их действия сульфгидрильные группы (—5Н). Среди этих ферментов находится и дегидраза фосфоглицеринальдегида. Кислород окислением сульфгидрильных групп ферментов может приостановить гликолиз. [c.298]

    Ионы металлов являются довольно специфичными активаторами. Часто для некоторых ферментов требуются ионы не одного, а нескольких металлов. Например, для фермента Ма , -АТФаза, который осуществляет перенос однозарядных катионов через клеточные мембраны, в качестве активаторов необходимы ионы магния, натрия и калия. Активация ионами металлов осуществляется по разным механизмам. В некоторых ферментах они входят в состав каталитического участка. В ряде случаев ионы металлов облегчают присоединение субстрата к активному центру фермента за счет образования дополнительных связей. Иногда ион металла соединяется с субстратом, образуя своеобразный металлосубстратный комплекс, который предпочтителен для действия фермента. [c.114]

    При рассмотрении строения и свойств ряда соединений, а также некоторых биохимических процессов в предыдущих главах сделана попытка привлечь квантово-механические представления к объяснению ряда явлений и закономерностей. В частности, такой подход использован при описании пептидной связи (зависимость ее свойств от делокализации и сопряжения электронов) и вторичной структуры белка (вклад п-электронов в поддержание а-спиральной конформации) (см. гл. II), механизма действия пиридоксадевых ферментов (смещение электронной плотности в фермент-субстратном комплексе— см. гл. III), природы цис-транс-изомерных превращений ретиналя (зависимость этого явления от значений порядка связей в сопряженной системе), структуры и свойств тиаминпирофосфата (причина повышенной электронной плотности у 2-го углеродного атома тиазольного цикла) и повьппенной реакционной способности изоаллоксазина в 1-м и 10-м положениях (у них максимальны индексы свободных валентностей) (см. гл. IV), при обсуждении вопроса о сущности жизни, при изучении природы макроэргических связей (неустойчивость системы сопряжения электронов) (см. гл. V), структуры и свойств пиримидиновых и пуриновых оснований (зависимость между порядком связи и реакциями присоединения), стэкингвзаимодействий в молекулах ДНК (их изменение при контактах молекул воды с протон-донорными и про-тон-акцепторными центрами азотистых оснований) (см. гл. VI), механизма активирования молекулярного кислорода в процессе биологического окисления (см. гл. X) и некоторых других случаях. [c.482]

    В заключение следует упомянуть, что металлические ионы встречаются во многих энзиматических системах и ферментативная активность часто зависит от присутствия атома металла. Металл может быть необходимым компонентом активного центра фермента в других случаях необходимо добавлять ионы некоторых металлов для того, чтобы активизировать фермент (различие состоит лищь в прочности соединения) [69]. Как указывает Л. А. Николаев, механизм действия активаторов в большинстве случаев неиз15естен и иногда кажется совершенно загадочным [70]. [c.94]

    Из приведенных здесь пояснений уже очевидна некоторая неоднозначность используемых понятий. Так, способы действия эидофермента более упорядоченного действия и фермента, действующего ио механизму множественной атаки, трудно (если возможно) разделить, так как в обоих случаях наряду с расщеплением срединных связей будет образовываться некоторое количество коротких продуктов деструкции субстрата. Видимо, возникновение этих терминов обусловлено одними и теми же экспериментальными наблк дениями, хотя смысл, вкладываемый в описание способов действия ферментов, совершенно различен. [c.78]

    У простых ферментов активные центры образуются за счет своеобразного расположения аминокислотных остатков в структуре белковой молекулы. К таким аминокислотным остаткам следует отнести 5Н-группы цистеина ОН-группы серина — МН-группы кольца имидазола в гистидине, а также некоторое значение придается карбоксильным группам аспарагиновой и глутаминовой аминокислот, индольной группе триптофана и др. Хотя вопрос о природе и механизме действия активных центров представляет большой интерес, но, к сожалению, наши сведения об этом являются пока ограниченными. Выяснено, что количество активных центров в ферментах, как правило, очень ограничено так, например, большинство ферментов имеют от 1 (трипсин, химотрипсин, карбокси-полипептидаза и др.) до 3—4 (уреаза) активных центров, и только отдельные ферменты содержат их в больших количествах (от 20 до 100 содержится в холинэстеразе и др.). [c.106]

    РИС. 6-15. Некоторые механизмы контроля метаболических реакций. На всех приведенных в книге рисунках модуляция активности фермента аллостерическими эффекторами, а также модуляция активности генов (транскрипция и трансляция) обозначается пунктирными линиями, отходящими от соответствующего метаболита. Линии заканчиваются знаком минус в случае ингибирования идерепрессиии знаком плюс в случае активации и депрессии. Кружки соответствуют прямому действию иа ферменты, а квадратики — репрессии или индукции синтеза ферментов. (Подобная схема представлена в работе [66а].) [c.64]

    Эксперименты по фиксации интермедиатов являются, таким образом, весьма мощным приемом в работе по изучению механизмов действия ферментов, и борогидрид был использован в ряде случаев для регистрации таких интермедиатов. Мы не можем, однако, ожидать, что неспецифичный реагент обычно будет способен вмешиваться в химию процессов фермент-субстратного комплекса. Борогидрид — особый случай, так как это очень маленькая молекула, почти такого же размера и формы, как Н2О. Ферменты обычно способны оставлять посторонние молекулы вне активного центра. Наилучший способ поместить реагент в активный центр — это замаскировать его под субстрат, т. е. использовать аналог субстрата, располагающий структурными особенностями, необходимыми для связывания, но несущий также функциональную группу, предназначенную для необратимой реакции с группами активного центра. (Поэтому такие реагенты пригодны больше для идентификации функциональных групп активного центра, чем для регистрации интермедиатов.) Далее мы детально опищем подход с применением аналогов субстратов, используя некоторые из многочисленных примеров, доступных из работ по химотрипсину. [c.481]


Смотреть страницы где упоминается термин Механизм действия некоторых ферментов: [c.343]    [c.261]    [c.175]    [c.52]    [c.141]    [c.430]    [c.5]    [c.4]    [c.138]    [c.153]    [c.156]    [c.117]    [c.304]    [c.311]    [c.100]    [c.545]   
Смотреть главы в:

Химия биологически активных природных соединений -> Механизм действия некоторых ферментов




ПОИСК





Смотрите так же термины и статьи:

Механизм действия

Ферменты механизм действия



© 2025 chem21.info Реклама на сайте