Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрометры с пространственным разделением

    В последнее время появились приборы, в которых пространственное разделение излучения по длинам волн дополняется селективной модуляцией. Оптической частью этих приборов являются интерференционные или растровые модуляторы. Сюда можно отнести и фурье-спектрометры, к которым понятие моно-или полихроматора вообще неприменимо. [c.16]

    Метод масс-спектрометрии позволяет разделять молекулы пробы в соответствии с их массами и измерять их количества. Для разделения молекул различных масс их прежде всего ионизируют, а затем помещают в электрическое и/или магнитное поле. Эти поля взаимодействуют с ионами, таким образом разделяя их пространственно в соответствии с их массой и зарядом. Разделенные ионы при достижении детектора создают электрический ток, который затем измеряется. Величина измеренного тока пропорциональна концентрации молекул в пробе. Можно выделить пять основных узлов обычного масс-спектрометра камера для ввода пробы, ионизационная камера, масс-анализатор, детектор и регистратор данных. [c.661]


    Оптические свойства магнитного и электрического секторных полей обеспечивают так называемую фокусировку первого порядка по направлению (а). Если при этом положение изобран ения линии спектра, кроме того, не зависит в нервом приближении от вариаций в скоростях ионов (Р), то прибор, как говорят, имеет двойную фокусировку. Точно так же, как в оптике, все ахроматические линзы делаются из двух различных стекол, так и все масс-спектрометры с двойной фокусировкой имеют электрическое и магнитное поля. Сугцествует много различных способов комбинирования магнитного и электрического полей в простейшей из этих комбинаций магнитное поле следует за электрическим (секторный масс-спектрометр типа тандем ). В этом случае изображение щели источника ионов, образованное первым секторным полем, является объектом изображения для второго. Однако в любом случае разделение ионов по массам происходит только в магнитном поле. Введение электрического поля лишь улучшает фокусировку изображения, устраняя скоростные аберрации первого порядка в ряде случаев и аберрации второго порядка также могут быть сведены к нулю [4, 5, 6 . Вторым способом достичь двойной фокусировки является пространственное совмещение электрических и магнитных полей (масс-спектрометр с совмещенными полями) [7]. Третьим способом является сочетание наложенных однородных электрического и магнитного полей с объектом и изображением внутри поля траектории ионов в таком приборе представляют циклоиды (циклоидальный масс-спектрометр с совмещенными полями) [8]. Однако пока нет универсального прибора с двойной фокусировкой, пригодного для любых применений. [c.56]

    Предлагаемая вниманию читателей монография является первой в мировой научной литературе книгой, посвященной использованию длинноволновых инфракрасных спектров в химических исследованиях. Само название монографии предполагает выделение низкочастотного интервала (от 10 до 400 см " )в особую спектральную область, отличающуюся от пограничной, более высокочастотной области, которая уже давно используется в химии при решении множества разнообразных задач. Такое разделение колебательного спектра, разумеется, чисто условно и не связано с какими-либо принципиальными соображениями. Инфракрасные полосы, наблюдающиеся как в длинноволновой, так и в обычной инфракрасной области, имеют единую природу и интерпретируются на одной и той же основе — теории колебаний многоатомных систем и электрооптической теории интенсивности. Специальное рассмотрение длинноволновых инфракрасных спектров вызвано главным образом тем обстоятельством, что используемые в этой области дифракционные спектрометры и интерферометры стали доступны для серийных измерений лишь с середины шестидесятых годов. В связи с этим в литературе до сих пор отсутствовал детальный анализ возможностей длинноволновых инфракрасных спектров в решении прикладных задач. Между тем их использование открывает весьма многообещающие перспективы в изучении строения молекул и их взаимодействий. В дальней инфракрасной области находятся собственные колебания водородной связи, колебания связей между тяжелыми атомами, скелетные деформационные и вращательные колебания, особенно чувствительные к пространственному стро- [c.5]


    Спектроскопические методы и приборы, о которых шла речь выше, являются в настоящее время наиболее распространенными. Как уже неоднократно отмечалось, они основаны на использовании в качестве диспергирующих элементов таких классических оптических устройств, как призма и диффракционная решетка, осуществляющих пространственное, угловое разделение световых пучков разных длин волн. Иными словами, для этих устройств характерна зависимость угла ф отклонения ими светового потока от длины волны Я, т. е. ф=<р(Я). Между тем за последние годы предложены принципиально новые методы спектрометрии, основанные на других способах кодирования и, следовательно, дифференцирования световых пучков различных частот. Рассмотрим этот вопрос на примере метода интерференционной модуляции, предложенного в 1956—1957 гг. в СССР и во Франции. [c.157]

    Быстрое увеличение числа различных типов спектральных приборов создает затруднения даже для опытного спектроскописта. Тем не менее общие принщ1пы, заложенные в их конструкции, вполне доступны для понимания. Кратко обсудим существующие в настоящее время системы ИК-спектрометров, чтобы читатель при желании мог без больших затруднений ориентироваться в более подробных описаниях. Для начала было бы полезно приспособить схему Вайнфорднера, предложенную для классификащ1и приемников излучения [86], к классификащ1и спектрометров, как показано на рис. 2.1. Приборы, в которых информация накапливается последовательно во времени, называют сканирующими. По мере сканирования каждого спектрального элемента информация накапливается с помощью одноканального приемника. Приборы с пространственным разделением, использующие многоканальные приемники, в средней ИК-области практически не применяются примером такого прибора в видимой области служит спектрограф, регистрирующий спектр на фотопластинку. Многоканальные спектрометры — это такие приборы, в которых одноканальный приемник одновременно получает много сигналов, соответствующих различным элементам спектра. Эти сигналы проходят через один канал, но расшифровываются таким образом, что дают информацию о каждом отдельном спектральном элементе. [c.16]

    Классификация методов спектрометрии баз1фуегся на двух основных признаках — числе каналов и физических методах выделения Я в пространстве или времени. Наиболее распространенными являются методы пространственного разделения Я (селективной фильтрации), которые называются классическими. Контуры шириной ЗЛ символически изображают аппаратные функции. В одноканальных методах применяют сканирование (символ ->), в многоканальных сканирование отсутствует и измерение интенсивности излучения длин волн Я, Я", Я " щюизво-дится одновременно. [c.210]

    Следующим признаком, по которому осуществляется классификация спектральных приборов [1, 58], является число одновременно регистрируемых спектральных интервалов т. Спектральные приборы с пространственным разделением волновых чисел в большинстве случаев могут быть выполнены в одноканальном п многоканальном вариантах. Это распространяется как на призменные, так и на дифракционные спектрометры, отличающиеся исходным принципом осуществления пространственного разделения, его степенью и, наконец, эксплуатационными возможностями тем не менее они оказываются лишенными отличительных черт. Аналогичная картина наблюдается и с непрямыми методами, обладающими свойством мультиплексности (адамар-спектрометры, фурье-спектрометры), заключающемся в одновременном приеме излучения, соответствующего многим спектральным интервалам, в кодированной форме одним приемником радиации. Иногда есть основания для дополнительной классификации приборов по потребительским признакам [14, 59], но вряд ли это целесообразно в данном случае, так как одному и тому же прибору по отдельным [c.142]

    Так как потоки в масс-спектрометре четко очерчены, из всех известных методов разделения изотопов только этот метод может обеспечить полное разделение за одну ступень. Но при разделении больщого количества материала возникают большие потоки газообразных ионов, при этом эффект их взаимного электростатического отталкивания (эффект пространственного заряда) создает значительные трудности для полного разделения, по сравнению с разделением микроколичеств. Тем не менее, когда возникла необходимость в получении больщих количеств разделенных изотопов урана, этот метод стал успешно развиваться. Электромагнитный сепаратор изотопов получил название калутрон. Происхождение этого названия объясняется тем, что для него был использован магнит калифорнийского ( университетского) циклотрона. Схема калутрона приведена на рис. 13.2. На заводе У-12 по разделению изотопов в Ок-Ридже для крупномасштабного получения изотопа №35 использовалось [c.343]


Смотреть страницы где упоминается термин Спектрометры с пространственным разделением: [c.925]    [c.123]    [c.361]    [c.154]    [c.142]    [c.66]   
Прикладная ИК-спектроскопия (1982) -- [ c.16 , c.34 ]

Прикладная ИК-спектроскопия Основы, техника, аналитическое применение (1982) -- [ c.16 , c.34 ]




ПОИСК







© 2024 chem21.info Реклама на сайте