Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетки прокариот, определение

    Форма бактерий. Бактерии (прокариоты) весьма разнообразны по форме. Форма клетки прокариот определяется жесткой (ригидной) клеточной стенкой. Именно последняя придает клетке определенную, наследственно закрепленную внешнюю форму. Этот признак чрезвычайно консервативен и используется при классификации микроорганизмов. Но и из этого положения имеются исключения. У ряда бактерий клеточная стенка довольно эластична, поэтому они способны в определенных пределах менять форму клеток, например путем периодического изгибания. Для ряда бактерий характерен плеоморфизм, который заключается в изменении морфологии клеток в зависимости от возраста и условий роста. Наконец, известны прокариоты (микоплазмы и Ь-формы), у которых клеточная стенка отсутствует совсем. [c.8]


    К оболочке вплотную прилегает цитоплазматическая мембрана. Она обладает избирательной проницаемостью, т. е. пропускает внутрь клетки и отводит из нее определенные вещества. Благодаря такой способности мембрана играет роль органеллы, концентрирующей питательные вещества внутри клетки и способствующей выведению наружу продуктов жизнедеятельности. Внутри клетки всегда наблюдается повышенное по сравнению о окружающей средой осмотическое давление. Цитоплазматическая мембрана обеспечивает его постоянство. Кроме того, она является местом локализации ряда ферментных систем, в частности окислительно-восстановительных ферментов, связанных с получением энергии (у эукариотов они находятся в митохондриях). В отличие от клеток эукариотов в прокариотической клетке отсутствует деление ее на отсеки. Клетки прокариотов не имеют ни комплекса Гольджи, ни митохондрий, не наблюдается у них и направленного движения цитоплазмы. Явления пиноцитоза и фагоцитоза прокариотам не свойственны. Из органелл только рибосомы аналогичны рибосомам эукариотов. [c.43]

    В пределах эукариотического типа клетки растений и животных по своей структуре отличаются друг от друга гораздо меньше, чем клетки прокариот от клеток эукариот. Различия между клетками прокариотических и эукариотических организмов настолько разительны, что возникает предполол ение о том, что переход от одного типа клеточной организации к другому является определенным этапом в ходе эволюции живой природы.  [c.12]

    Форма клетки прокариот определяется жесткой (ригидной) клеточной стенкой. Именно последняя придает клетке определенную, на- следственно закрепленную внешнюю форму. Консерватизм этого признака был вначале, скорее, угадан, а позднее доказан и использован при создании первых классификаций микроорганизмов. Но и из этого положения имеются исключения. У ряда бактерий клеточная стенка довольно эластична, поэтому они способны в определенных пределах менять форму клеток, например, путем периодического изгибания. Наконец, известны прокариоты, у которых клеточная стенка отсутствует совсем. Это микоплазмы и Ь-формы. Микоплазмы существуют в природе и в большинстве патогенны для человека и животных. Ъ-формы получены экспериментально под действием химических соединений, которые разрушают клеточную стенку бактерий или подав-,ляют синтез веществ, являющихся ее необходимыми компонентами, Для этих организмов характерен ярко выраженный плеоморфизм. [c.23]

    Одним из основных структурных компонентов клетки прокариотов является клеточная оболочка. В состав клеточной оболочки бактерий (рис.11, а) входят сложные молекулярные комплексы, состоящие из белков, полисахаридов и жироподобных веществ. Будучи жесткой, она служит как бы скелетом клетки, придавая ей определенную форму. Клетки цианобактерий (рис. 11, б) покрыты эластичной пектиновой оболочкой. Клеточная оболочка прокариот образует своеобразный барьер на пути прохождения растворенных веществ из окружающей среды внутрь клетки. [c.42]


    Прокариотная клетка отличается тем, что имеет одну внутреннюю полость, образуемую элементарной мембраной, называемой клеточной, или цитоплазматической (ЦПМ). У подавляющего большинства прокариот ЦПМ — единственная мембрана, обнаруживаемая в клетке. В эукариотных клетках в отличие от прокариотных есть вторичные полости. Ядерная мембрана, отграничивающая ДНК от остальной цитоплазмы, формирует вторичную полость. Наружные мембраны хлоропластов и митохондрий, окружающие заключенные в них функционально специализированные мембраны, играют аналогичную роль. Клеточные структуры, Офаниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. Ядро, митохондрии, хлоропласты — это клеточные органеллы. В эукариотных клетках помимо перечисленных выше есть и другие органеллы. [c.18]

    Прокариоты без клеточной стенки. При воздействии определенными химическими веществами оказалось возможным получать в лаборатории из разных видов эубактерий формы с частично (сфе-ропласты) или полностью (протопласты) отсутствующей клеточной стенкой. Впервые это обнаружили при действии на бактериальные клетки лизоцимом, ферментом из группы гликозидаз, содержащимся в яичном белке, слезной жидкости и вьщеляемом [c.35]

    На клеточной поверхности многих прокариот имеются структуры, определяющие способность клетки к движению в жидкой среде. Это — жгутики. Их число, размеры, расположение, как правило, являются признаками, постоянными для определенного вида, и поэтому учитываются при систематике прокариот. Однако накапливаются данные о том, что количество и расположение жгутиков у одного и того же вида могут в значительной степени определяться условиями культивирования и стадией жизненного цикла, и, следовательно, не стоит переоценивать таксономическое значение этого признака. [c.39]

    Деление прокариотной клетки начинается, как правило, спустя некоторое время после завершения цикла репликации молекулы ДНК. Вероятно, репликация бактериальной хромосомы запускает какие-то процессы, ведущие к клеточному делению. Более детальное изучение у разных видов прокариот взаимосвязи между репликацией ДНК и делением клетки не привело к однозначным результатам. Получены данные о том, что сигналом к клеточному делению служит начало репликации ДНК, ее завершение или репликация определенного локуса бактериальной хромосомы. Таким образом, в норме существует вполне определенная временная связь между репликацией хромосомы и делением бактериальной клетки. Воздействия различными химическими веществами и физическими факторами, приводящие к подавлению репликации ДНК, останавливают и клеточное деление. Однако при некоторых условиях связь между обоими процессами может быть нарушена, и клетки способны делиться в отсутствие синтеза ДНК. Это удалось получить введением определенных мутаций в генетический аппарат бактериальной клетки. [c.61]

    Конструктивные и энергетические процессы протекают в клетке одновременно. У больщинства прокариот они тесно связаны между собой. Однако у некоторых прокариотных организмов можно выделить последовательности реакций, служащих только для получения энергии или только для биосинтеза. Связь между конструктивными и энергетическими процессами прокариот осуществляется по нескольким каналам. Основной из них — энергетический. Определенные реакции поставляют энергию, необходимую для биосинтезов и других клеточных энергозависимых функций. Биосинтетические реакции кроме энергии нуждаются часто в поступлении извне восстановителя в виде водорода (электронов), источником которого служат также реакции энергетического метаболизма. И наконец, тесная связь между энергетическими и конструктивными процессами проявляется в том, что определенные промежуточные этапы или метаболиты обоих путей могут быть одинаковыми (хотя направленность потоков реакций, относящихся к каждому из путей, различна). Это создает возможности для использования общих промежуточных продуктов в каждом из метаболических путей. Промежуточные соединения такой природы предложено называть амфиболитами, а промежуточные реакции, одинаковые для обоих потоков, — амфиболическими. [c.80]

    При определении влияния температуры на прокариотные организмы следует различать два момента способность организмов к выживанию после длительного нахождения в экстремальных температурных условиях и способность их к росту в этих условиях. Приспособления, сформированные у прокариот для перенесения неблагоприятных условий, в том числе и температурных, — это споры, цисты. Характеристика их устойчивости к высоким температурам приведена в табл. 8. Устойчивость вегетативных клеток и различных покоящихся форм больше в условиях воздействия низкими температурами. Так, вегетативные клетки и покоящиеся формы сохраняли жизнеспособность после длительного выдерживания при температуре, близкой к абсолютному нулю. Последнее используется в качестве одного из способов, обеспечивающих длительное хранение культур прокариот. [c.132]


    Таким образом, процессы транскрипции и трансляции, служащие для выражения в онтогенезе генетической информации, не приводят к наследованию изменений, возникающих при их функционировании. Только изменения, происходящие в молекулах ДНК, могут сохраняться в ряду поколений, поскольку они воспроизводятся в процессе репликации. Следовательно, в основе эволюции прокариот лежит способность к изменению только их генетического материала. У прокариот весь генетический материал, необходимый для жизнедеятельности, локализован в одной хромосоме, т.е. бактериальная клетка гаплоидна. В определенных условиях в клетках бактерий может содержаться несколько копий хромосомы. [c.143]

    На проявление мутантных признаков влияет также количество копий хромосомы, содержащихся в клетке. Все прокариоты гаплоидны, имеют набор генов, локализованных в одной хромосоме. В определенных условиях в клетке можно обнаружить несколько копий одной хромосомы. Если в такой клетке произошла мутация, приведшая к нарушению синтеза определенного метаболита, то она сразу (после одного цикла репликации—транскрипции—трансляции) не проявится, поскольку синтез необходимого клетке метаболита будет осуществляться в результате функционирования неповрежденных генов, содержащихся в остальных хромосомных копиях. Для фенотипического выражения мутантного гена необходимо, чтобы он содержался в клетке в чистом виде, т.е. клетка имела одну копию хромосомы с мутантным геном, или чтобы все копии хромосомы в клетке имели одинаковый генотип. Это происходит через несколько клеточных делений (рис. 39). [c.150]

    Электронно-микроскопическое изучение вегетативных клеток цианобактерий обнаружило принципиальное сходство их строения с клетками грамотрицательных эубактерий. Более чем у 200 чистых культур определен состав оснований хромосомной ДНК. По этому признаку цианобактерии обнаруживают гетерогенность (молярное содержание ГЦ-оснований в ДНК от 35 до 71 %), сравнимую только с остальными прокариотами (25 — 75 %). [c.313]

    Для нейтрализации токсических форм О2 существующие прокариоты выработали различные защитные механизмы, которые могут быть разделены на несколько типов. В основе систем защиты первого типа лежит активность специальных ферментов, для которых разложение токсических форм О2 является основной и в ряде случаев единственной функцией. В системах защиты второго типа для разрушения токсических форм О2 используются определенные клеточные метаболиты. Как правило, в этом случае участие в защите клетки от токсических эффектов производных О2 является не единственной функцией этих метаболитов. Наконец, к защитным механизмам особого типа может быть отнесен ряд приспособлений, выработанных прокариотами на разных уровнях популяционном, физиологическом, структурном. Более вероятно, что они были созданы для других целей, но оказались полезными и для детоксикации О2. [c.334]

    Термин дыхание впервые был введен для обозначения определенного процесса, связанного с жизнедеятельностью высших организмов (растений и животных). Два основных признака характеризовали этот процесс газообмен с внешней средой с непременным участием О2 необходимость для жизнедеятельности организма. Принципиальное сходство процесса дыхания на клеточном уровне у всех высших организмов делало употребление этого термина удобным, а обозначаемое им понятие достаточно четким. Сложности возникли при применении термина дыхание для обозначения функционально аналогичных процессов у прокариот в силу их необычайного разнообразия. В нашем понимании термин дыхание распространяется на все процессы ферментативного погло-шения клеткой молекулярного кислорода. [c.345]

    Как и все прокариоты, Е. соИ имеет клеточную стенку, к которой с внутренней стороны примыкает клеточная мембрана. Кроме большой двухцепочечной ДНК, локализованной в нуклеоиде, Е. соН, подобно другим прокариотам, содержит несколько мелких кольцевых ДНК, которые называются плазмидами. Бактерии способны передвигаться в водной среде при помощи мембранных структур, называемых жгутиками. Важнейшая роль цитоплазматической мембраны заключается в избирательном транспорте питательных веществ в клетку и продуктов метаболизма из клетки. В цитоплазме Е. соИ локализованы рибосомы, секреторные гранулы, а также запасники питательных веществ — жиров или углеводов. Для прокариотических клеток характерно образование нитевидных ассоциатов, которые в определенных условиях могут диссоциировать на отдельные клетки. [c.12]

    Бактерии, как правило, размножаются путем деления надвое (бинарное деление). Клетка удлиняется, а затем происходит образование поперечной перегородки, постепенно врастающей снаружи внутрь (или перетяжки), после чего дочерние клетки расходятся. У многих бактерий, однако, после деления в определенных условиях среды дочерние клетки некоторое время остаются связанными между собой, образуя характерные группы. При этом в зависимости от ориентации плоскостей деления и числа делений возникают различные формы, например у сферических бактерий — пары клеток (диплококки), цепочки (стрептококки), пластинки или же пакеты (сарцины и стафилококки). Палочковидные бактерии также могут образовывать пары или цепочки клеток. Размножение почкованием встречается у прокариот как исключение. Делению клетки предшествует удвоение, или репликация, бактериальной хромосомы. Однако диплоидная фаза в клеточном цикле ограничена очень короткой стадией. Таким образом, прокариоты гаплоидные организмы. [c.12]

    В процессе роста и развития клеток происходят изменения в размерах и архитектонике структурных компонентов клеток Для прокариот такие изменения трудно уловимы при их быстром размножении простым делением В случае спорообразования такие изменения можно уловить с большей определенностью Используя цейтраферную киносъемку удается четко зафиксировать происходящие события, например, через интервалы времени, равные нескольким секундам Грибные, растительные и животные клетки в этом смысле оказываются более удобными объектами для наблюдения Можно проследить их рост по размерам, равно как и формирование дифференциальных структур в течение часов и суток [c.151]

    Один из возможных способов увеличения фотосинтеза и, следовательно, продуктивности растений состоит в клонировании хлоро-пластных генов в клетках бактерий и их переносе в растения. Известно, что хлоропласты и прокариотические клетки сходны по ряду признаков. На основании этого возникла симбиотическая гипотеза происхождения хлоропластов, впервые выдвинутая А. С. Фамин-циньпл (1886). Согласно этой гипотезе, клетки прокариот и хлоропласты сходны. В них присутствуют кольцевые ДНК, 708-рибо-сомы синтез белков начинается с одной и той же аминокислоты — N-формилметионина, а синтез белка подавляется хлорамфенико-лом, а не циклогексимидом, как у эукариот. Позже было показано, что ДНК-зависимая РНК-полимераза Е. соН связывается с определенными участками ДНК хлоропластов шпината. [c.150]

    Бактерии настолько малы, что находятся на грани разрешения обычного светового микроскопа. Их линейные размеры достигают всего лишь порядка 1 мкм. Поэтому в течение долгого времени было трудно при непосредственном визуальном наблюдении получить информацию об их внутренней структуре. Однако с появлением электронного микроскопа оказалось возможным выявить детальное строение бактериальной клетки, как это можно видеть на приведенной электронной микрофотографии (фиг. 21). Следует отметить, что увеличение на этой микрофотографии в пять раз больше, чем на предыдущей микрофотографии (фиг. 20). Следовательно, размер всей бактериальной клетки не превышает размера митохондрий, находящихся в цитоплазме клеток эукариотов. Хотя в прокариотической клетке нет истинного ядра, ДНК в ней явно локализована в определенном участке клетки, которую иногда называют центральным телом. Окружающая это тело часть клетки o epжит много РНК. Как и в эукариотической клетке, основная масса РНК в клетке прокариотов сосредоточена в рибосомах — гранулярный фон на большей части клеток (фиг. 21). Эндоплазматической же сети в клетках прокариотов нет. По 4юрмальной аналогии с областью клетки эукариотов, в которой сосредоточена ДНК, содержащее ДНК пентральное тело бактерии часто называют ядром , остальную часть клетки обычно называют цитоплазмой бактерии. Это парадоксальное распространение терминов, используемых для эукариотов, на бактерии, отличающиеся от клеток высших форм отсутствием именно этих структур, настолько устоялось в молекулярной генетике, что в дальнейшем нельзя будет избежать употребления этих неточных слов. [c.47]

    Многие вирусы приспособились к заражению лишь какого-то одного определенного хозяина. Другие же, такие, например, как ВТМ, имеют широкий спектр хозяев. Наиболее поразительным примером вирусов с широким спектром хозяев являются некоторые вирусы растений, способные размножаться и в насекомых-переносчиках, а также многие энцефаловирусы и другие вирусы животных, способные размножаться как в клетках позвоночных, так и в клетках членистоногих. До сих пор не обнаружено вирусов, способных поражать одновременно клетки прокариот (бактерии) и эукариот (растения и животные). [c.226]

    Хлоропласты осуществляют фотосинтез в значительной степени так же, как прокариоты-цианобактерии, солнечный свет у них поглощается присоединенным к мембранам хлорофиллом. Некоторые Хлоропласты по строению во многом напоминают цианобактерии например сходными могут быть их размеры и способ укладки в слои хлорофиллсодержащих мембран (рис. 1-20). Показано также, что хлоропласты размножаются делением, а нуклеотидная последовательность их ДНК почти полностью гомологична определенным участкам бактериальной хромосомы. Все это наводит на мысль, что хлоропласты и цианобактерии имеют общего предка и что хлоропласты произошли от прокариот, захваченных когда-то эукариотическими клетками. Прокариоты осуществляли фотосинтез для клеток-хозяев в обмен на предоставляемые [c.31]

    По строению и химическому составу клеточная стенка прокариот резко отличается от таковой эукариотных организмов. В ее состав входят специфические полимерные комплексы, которые не содержатся в других клеточных структурах. Химический состав и строение клеточной стенки постоянны для определенного вида и являются важным диагностическим признаком. В зависимости от строения клеточной стенки прокариоты делятся на две большие группы. Было обнаружено, что если фиксированные клетки прокариот обработать сначала кристаллическим фиолетовым, а затем йодом, образуется окрашенный комплекс. При последующей обработке спиртом в зависимости от строения клеточной стенки судьба комплекса различна у так называемых грамположительных видов этот комплекс удерживается клеткой, и последние остаются окрашенными, у грамотри-цательных видов, наоборот, окрашенный комплекс вымывается из клеток и они обесцвечиваются Ч У некоторых прокариот положительная реакция при окрашивании описанным выше способом свойственна только клеткам, находящимся в стадии активного роста. Выяснено, что окрашенный комплекс образуется на протопласте, но его удерживание клеткой или вымывание из нее при последующей обра- ботке спиртом определяются особенностями строения клеточной стенки. [c.25]

    Другой широко распространенный тип запасных веществ многих прокариот — полифосфаты, содержащиеся в гранулах, называемых волютиновыми, или метахроматиновыми зернами. Используются клетками как источник фосфора. Могут ли они служить источником энергии у прокариот, определенно не доказано. [c.55]

    Механизмы первого типа (так называемая компартментация) более распространены у эукариот (см. гл. 2) в связи с локализацией ферментов в субклеточных органеллах митохондриях, лизосо-мах и т.д. Однако и в клетках прокариот возможны определенные виды компартментации  [c.98]

    Важность обмена генетическим материалом для эволюции прокариот подтверждается тем, что многие бактерии имеют другой механиз.м обмена генами — естественную трансформацию. В ходе этого процесса бактерии активно поглощают ДНК, оказавшуюся в среде. Если поглощенная ДНК гомологична внутриклеточной, то воз.можна рекомбинация между ними. Для того чтобы повысить вероятность попадания в клетку именно гомологичной ДНК, некоторые бактерии амеют систему дискриминации, узнающую определенную последовательность ДНК, часто встречающуюся у этих бактерий, но редко у других, и позвачяющую транспорт в клетку лишь тех. молекул ДНК, которые отмечены такой последовательностью. Проникновение в клетку произвольной ДНК из среды потенциально опасно таки.м путе.м могли бы проникать патогенные агенты, например вирусы. Видимо, поэтому при естественной трансформации в клетку проникает лишь одна линейная цепь ДНК, а вторая в ходе транспорта деградирует. В таком виде ДНК относительно безвредна она рекомбинирует с клеточной ДНК при наличии гомологичных участков, а при отсутствии гомологии, как правило, де- [c.128]

    Биологическое связывание азота осуществляется определенными организмами (прокариотами) — бактериями и сине-зелеными водорослями. Связывающие азот бактерии могут быть свободно живущими или могут существовать в симбиотической связи с растениями. Из последней категории особенно важен род Rhizobium, который образует способные связывать азот клубеньки на корнях важных сельскохозяйственных бобовых культур (сои, клевера и люцерны). В этом симбиозе специфичностью обладают как растения, так и бактерии, хотя биохимическая основа их симбиотического взаимодействия не ясна. Считают, что бактерия содержит всю генетическую информацию, необходимую для синтеза фермента нитрогеназы, который катализирует процесс связывания азота. После того, как бактерии рода Rhizobium поселяются на корнях растения-хозяина, они вскоре превращаются в увеличенные клетки, не способные к репродукции (бактериоиды) заключенные в мембрану, они живут в цитоплазме клетки растения-хозяина. [c.400]

    Если вектор представляет собой плазмиду, реплицирующуюся независимо от хромосомы, то он должен содержать сайт инициации репликации, функционирующий в хозяйской клетке. Если же вектор предназначен для встраивания в хозяйскую хромосомную ДНК, то для обеспечения рекомбинации он должен нести последовательность, комплементарную определенному участку хромосомной ДНК хозяина (хромосомный сайт интеграции). Поскольку технически многие операции с рекомбинантными ДНК сложнее проводить в клетках эукариот, чем прокариот, большинство эукариотических векторов сконструированы как челночные. Другими словами, эти векторы несут два типа сайтов инициации трансляции и два типа селективных маркерных генов, одни из которых функционируют в Es heri hia oli, а другие — в эукариотических хозяйских клетках. Такие векторные системы экспрессии разработаны для дрожжей, насекомых и клеток млекопитающих. [c.136]

    Для направленного изменения прокариот, синтезирующих определенные метаболиты, в принципе есть два пути. Во-первых, можно изменить активность или содержание одного или нескольких ферментов того или иного биосинтетического пути с тем, чтобы увеличить продукцию нужного метаболита. Во-вторых, в прокариотический геном можно ввести чужеродные гены, кодирующие ферменты, которые, используя эндогенный метаболит в качестве субстрата, обеспечат синтез метаболита, изнaчaJ Iьнo не продуцируемого хозяйской клеткой. Такого рода манипуляции представляются достаточно простыми, однако далеко не всегда [c.265]

    Регулирование конечным продуктом активности аллостериче-ского фермента определенного биосинтетического пути обеспечивает мгновенную реакцию, приводящую к изменению выхода этого продукта. Если последний оказывается ненужным, отпадает надобность и в ферментах, участвующих в его синтезе. Проявлением максимальной экономичности клеточного метаболизма служат выработанные клеткой механизмы, регулирующие ее ферментный состав. Очевидна целесообразность синтеза только тех ферментов, которые необходимы в конкретных условиях. Показано, что у прокариот в одних условиях фермент может содержаться в количестве не более 1—2 молекул, в других — составлять несколько процентов от клеточной массы. [c.117]

    Как это осуществляется Изучение механизма катаболитной репрессии обнаружило, что этот тип регуляции тесно связан с внутриклеточным уровнем циклического АМФ (цАМФ), который в этом процессе функционирует в качестве эффектора. Он образует комплекс с аллостерическим белком — катаболитным активатором, не активным в свободном состоянии. Этот комплекс, присоединившись к определенному участку на промоторе, обеспечивает возможность связывания РНК-полимеразы с промотором и инициацию транскрипции. Количество образующегося комплекса определяется концентрацией цАМФ, которая уменьшается при увеличении содержания глюкозы в среде. Таким образом, глюкоза вызывает изменение внутриклеточной концентрации цАМФ. Это соединение обнаружено в клетках всех прокариот. Его единственная функция — регуляторная. Циклический АМФ образуется из АТФ в реакции, катализируемой аденилатциклазой, связанной с ЦПМ  [c.122]

    Все гетеротрофные организмы (низшие и высшие) с помощью определенных ферментативных реакций активно включают углекислоту в метаболизм, при этом у прокариот пути использования СО2 намного многообразнее, чем у эукариот. Углекислота у прокариот активно используется по путям как конструктивного, так и энергетического метаболизма. В конструктивном метаболизме она выполняет две основные функции присоединение углекислоты в качестве С,-группы к молекуле клеточного метаболита приводит к удлинению ее углеродного скелета кроме того, при этом происходит регулирование общего уровня окисленно-сти-восстановленности клеточных метаболитов, поскольку включение СОз-фуппы в молекулу приводит к заметному повышению степени ее окисленности. В этом случае СО2 входит в состав веществ клетки. [c.291]

    В более примитивных прокариотических клетках ДНК не выделяется специальной дополнительной мембраной. Обычно эти клетки содержат одну гигантскую молекулу двуспиральной ДНК, состоящую из нескольких миллионов нуклеотидов. Иногда, по аналогии с эукариотической клеткой, ее называют хромосомной ДНК. В некоторых случаях в прокариотических клетках, в дополнение к этой ДНК, присутствуют еще и относительно маленькие молекулы ДНК (длиной в несколько тысяч- нуклеотидов), несущие дополнительную информацию их называют плазмидами. В большинстве случаев плазмиды копируются независимо от хромосомной ДНК и клетки могут содержать ряд подобных молекул. Несмотря на маленькие размеры, они придают клетке ряд особенностей, чрезвычайно важных для их выживания, например устойчивость к определенным антибиотикам. Прокариотические клетки обладают относительно маленькими размерами. Их линейные размеры имеют порядок 1 мкм, а самые маленькие из известных прокариотических клеток — микоплазмы — имеют размер около 0,3 мкм. Все прокариотические клетки могут функционировать независимо и, следовательно, должны рассматриваться как одноклеточные живые организмы (прокариоты). К этой группе живых организмов относят микоплазмы, бактерии и синезеленые водоросли (цианобактерии). Бактерии можно разделить на две основные группы эубактерии (действительные бактерии) и. архебактерии. К последним относят микроорганизмы, живущие в экстремальных условиях — в горячей или сильнокислотной среде (термоатщдофилы), в концентрированных соляных растворах (галофилы) и др. Условия жизни архебактерий, по-видимому, достаточно близки к тем,"которые существовали на Земле в период зарождения жизни. [c.23]

    При клеточной дифференцировке, происходящей в процессе эмбрионального развития, транскрипция различных генов претерпевает последовательные изменения как качественного, так и количественного характера. Каждая стадия дифференциации включает в себя активацию очень большого числа структурных генов. Образование индивидуальных тканей связано с синтезом мРНК, которые кодируют белки, характерные для данной ткани. Несмотря на то. что во всех тканях одного и того же организма имеется полный набор хромосом и генов, в одних видах клеток наблюдается транскрипция тех генов, которые не транскрибируются в других. Это означает, что и в процессе дифференцировки и функционирования клеток должны существовать способы контроля транскрипции, необходимые для активации или репрессии определенных генов. Существует несколько принципиальных различий в условиях транскрипции у про- и эукариот количество ДНК у эукариот в расчете на клетку в несколько тысяч раз больше, чем у прокариот, и если у бактерии существует одна хромосома, то у эукариотических клеток гены распределены между разными хромосомами. Кроме того, в эукариотах транскрибируется хроматин, расположенный в ядре, а синтезированная информационная РНК транспортируется в цитоплазму, тогда как у бактерий ядра нет и синтезы РНК и белка не разделены в пространстве. [c.416]

    Клеточная стенка. Клеточная стенка — важный и обязательный структурный элемент прокариотной клетки (исключение миконлазмы и Ь-формы), располагающийся под капсулой или слизистым чехлом или же непосредственно контактирующий с окружающей средой (у клеток, не содержащих этих слоев клеточной оболочки). На долю клеточной стенки приходится от 5 до 50 % сухих веществ клетки. Клеточная стенка служит механическим барьером между протопластом и внешней средой и придает клеткам определенную, присущую им форму. Концентрация солей в клетке, как правило, намного выше, чем в окружающей среде, и поэтому между ними существует большое различие в осмотическом давлении. Клеточная стенка чисто механически защищает клетку от проникновения в нее избытка воды. По строению и химическому составу клеточная стенка прокариот резко отличается от таковой эукариотных организмов. В ее состав входят специфические полимерные комплексы, которые не содержатся в других клеточных структурах. Химический состав и строение клеточной стенки постоянны для определенного вида и являются важным диагностическим признаком. [c.12]

    Прокариоты без клеточной стенки. При воздействии определенными химическими веществами оказалось возможным получать в лаборатории из разных видов прокариот формы с частично (сферопласты) или полностью (протопласты) отсутствующей клеточной стенкой. Впервые это обнаружили при действии на бактериальные клетки лизоцимом, ферментом из группы гликозидаз, содержащимся в яичном белке, слезной жидкости и выделяемом некоторыми бактериями. Было выяснено, что лизоцим разрывает 3-1,4-гликозидные связи, соединяющие остатки Ы-ацетилглюкозамина и К-ацетилмурамовой кислоты в гетерополисаха-ридной цепи (рис. 1.3), что в конечном итоге может привести к полному удалению пептидогликана из клеточной стенки. Полученные под действием лизоцима сферопласты (из грамотрицательных прокариот) или протопласты (из грамположительных) принимают сферическую форму [c.18]


Смотреть страницы где упоминается термин Клетки прокариот, определение: [c.317]    [c.18]    [c.215]    [c.153]    [c.348]    [c.153]    [c.525]    [c.48]    [c.139]    [c.144]   
Биохимия Том 3 (1980) -- [ c.14 ]




ПОИСК







© 2025 chem21.info Реклама на сайте