Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен скорость термической деструкции

    Исследование термического разложения низкомолекулярного полипропилена в вакууме позволило установить, пользуясь методом масс-спектрометрии, присутствие в числе летучих продуктов этилена, пропилена, бутана, бутиленов, пентана и др. Изучение механизма термической деструкции ВЫСокомолеку-лярного полимера 92, проводившееся в вакууме, показало, что при температуре ниже 300° С деструкция протекает очень медленно. При 412° С в течение 30 мин полипропилен разрушается практически полностью. При этом был установлен цепной механизм реакции распада. Введение такого ингибитора, как дифенилолпропан, заметно уменьшает начальную скорость разложения 1 0, практически постоянную при небольшой глубине превращения. Необходимость добавления довольно больших количеств указанного стабилизатора, по-видимому, связана с испарением или разложением данного препарата, практически мало устойчивого при температуре выше 250° С. Прп введении 5% дифенилолпропана скорость разложения WQ уменьшилась в 9 раз по сравнению с нестабилизированным образцом. [c.198]


    Термическую деструкцию полипропилена, как и полиэтилена, используют для уменьшения молекулярного веса [120, 123]. Так, полипропилен с улучшенной способностью к переработке получают нагреванием полимера с высоким молекулярным весом при температуре до 400°С в вакууме или в среде инертного газа [122]. Снижения вязкости расплава можно достигнуть при одновременном воздействии тепла и механических колебаний, например вызванных ультразвуковым воздействием [123]. Отмечено повышение скорости термической деструкции полипропилена в присутствии добавок (2—5%) глицидилметакри-лата [141]. [c.106]

    Хотя данные о выходах мономера дают ценную качественную картину реакций деполимеризации различных полимеров, очевидно, что не только структурные факторы должны играть в процессах термодеструкции определенную роль. Из данных по характеристике скоростей процессов термодеструкции, приведенных в четвертой колонке обсуждаемой таблицы, видно, что они не всегда соответствуют результатам, которых можно было бы ожидать на основании выходов мономера. В соответствии с обсужденной выше теорией следовало ожидать, что максимальная скорость реакции должна наблюдаться нри образовании 20—30% летучих продуктов деструкции и низких выходах мономера. Но тогда возникает вопрос почему при термодеструкции полистирола максимальная скорость реакции наблюдается при превращении в летучие продукты 40% полимера и почему максимальная скорость реакции имеет место для а-заме-щенных нолистиролов при ожидаемой на основании теории степени превращения 25 %, тогда как при термодеструкции этих полимеров выходы мономера даже выше, чем при термодеструкции полистирола При термодеструкции таких полимеров, как полиэтилен и полипропилен, скорость реакции вообще не имеет максимума, несмотря на то что, судя по образующимся продуктам деструкции, в этих процессах преобладают реакции передачи цепи. С другой стороны, нри деструкции таких полимеров, как полиметакрилат и полиметакрилонитрил, которые на начальных стадиях термодеструкции образуют почти чистый мономер, очень быстро повышается их устойчивость к термическому разложению, и для дальнейшего превращения их в летучие продукты требуется применение гораздо более высоких температур, причем в этих условиях образуются отличные от мономера осколки полимерной цепи. [c.26]

    Полиолефины (полиэтилен, полипропилен, сополимеры этилена с пропиленом и другими мономерами) являются типичными представителями карбоцепных полимеров. Термическая и термоокислительная деструкция по-лиолефинов изучена достаточно подробно [13—16, 21]. Показано [17, 18], что при термоокислении полипропилена зависимость количества поглощенного кислорода от продолжительности окисления описывается кривыми ав-токаталитического типа. Термоокисление сополимера этилена с пропиленом описывается линейной зависимостью. Процесс не имеет индукционного периода и протекает с постоянной скоростью. Полиэтилен обладает большей стойкостью к тремоокислению по сравнению с полипропиленом, что обусловлено наличием третичного углеродного атома в макромолекуле последнего. Энергия активации термоокисления полиэтилена на воздухе несколько выше энергии активации термоокисления полипропилена [19, 20]. [c.66]



Смотреть страницы где упоминается термин Полипропилен скорость термической деструкции: [c.300]    [c.54]   
Термическое разложение органических полимеров (1967) -- [ c.134 , c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Деструкция полипропилена

Полипропилен

Полипропилен деструкция термическая

Термическая деструкция



© 2025 chem21.info Реклама на сайте