Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес высоко и низкомолекулярных веществ

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]


    В реальных пластиках при отверждении фиксируется определенное распределение пор по размерам вследствие возрастания вязкости, которое препятствует изменению размера пор. Таким образом, при изготовлении деталей из компаундов, содержащих растворенные газы и низкомолекулярные вещества, при отверждении происходит повышение давления равновесной газовой среды над компаундом вследствие повышения температуры, а также вследствие увеличения молекулярной массы полимера, что приводит к снижению растворимости низкомолекулярных веществ. В области гелеобразования пористость замораживается , если полимер может выдержать давление газа в порах. Число пор и их распределение по размерам зависят от количества легколетучих продуктов в компаунде и технологии его изготовления. Невысокие температуры способствуют уменьшению пористости эпоксидных компаундов, но размер пор может быть довольно велик при высоких температурах пористость сильно возрастает и образуются поры с широким распределением по размерам. Для расчета пористости необходимо знать коэффициенты растворимости и диффузии различных соединений в неполностью отвержденном полимере, которые в настоящее время не известны. Однако для ориентировочной оценки этих величин можно использовать корреляционные соотношения, разработанные для жидкостей [32—34]. [c.169]

    Нерастворимыми в указанных выше углеводородах могут быть как относительно высокомолекулярные соединения, обладающие высокой степенью ароматичности, так и сравнительно низкомолекулярные вещества, имеющие поляр 1ые функциональные группы. Такое явление наблюдалось при разделении асфальтенов на гель-хроматографе и экстракции большие набором растворителей разной полярности. Кроме того, определение средней молекулярной массы асфальтенов сильно осложняется большой склонностью молекул асфальтенов к ассоциации, поэтому молекулярная масса одних и тех же асфальтенов, но определенная разными методами, молсет различаться иа несколько порядков. [c.210]

    Действительно такие свойства, как проницаемость и, соответственно, диффузия и растворимость низкомолекулярных веществ в полимерах, находящихся в высокоэластическом состоянии, очень близки к этим свойствам для жидкостей. Высокоэластичность проявляется в полной мере лишь тогда, когда скорость деформации молекул и скорость их перемещения существенно отличаются друг от друга. В связи с этим для реализации высокоэластического состояния одной гибкости молекулярной цепи еще недостаточно, необходима еще и высокая скорость изменения формы цепных молекул. [c.111]


    Возможность частичного проникновения низкомолекулярных веществ в дефектные кристаллы полиэтилена вытекает и из работы по исследованию молекулярного движения в кристаллическом полиэтилене. Методами ЯМР, дифракции рентгеновских лучей, диэлектрических потерь и диффузии н-гексана и бензола было установлено, что в кристаллической части полиэтилена низкой плотности наблюдается частичное вращение участков цепей, зависящее от дефектности решетки за счет включения в нее узлов разветвления цепных молекул. В отличие от полиэтилена низкой плотности вращение участков цепных молекул в кристаллитах полиэтилена высокой плотности сильно ограничено и сами кристаллиты построены более регулярно. [c.145]

    Из уравнения следует, что для достижения достаточно высоких значений молекулярной массы необходимо тщательное удаление низкомолекулярного вещества. Например, для получения полиэфиров с Рп = 100 (/С=4,9 при 280 °С) допустимое содержание воды не должно превышать тысячных долей процента. [c.59]

    Высокая молекулярная масса и гибкость макромолекул— важные характеристики, с которыми связаны особенности физико-химических свойств полимеров. Особенности полимеров выражаются в следующем 1) могут пребывать в характерном только для них высокоэластичном состоянии, обусловленном гибкостью их длинных молекул 2) способны набухать в жидкостях 3) растворы полимеров обнаруживают ряд аномалий по сравнению с растворами низкомолекулярных веществ 4) могут образовывать волокна, пленки, отличающиеся высокой анизотропией свойств 5) способны к своеобразным химическим превращениям. [c.469]

    Принцип метода. Содержащиеся в белковых растворах соли как низкомолекулярные вещества при. гель-фильтрации проникают в частицы геля, и поэтому их миграция в геле замедляется. В то же время белки благодаря высокому молекулярному весу без задержки проходят через колонку с гелем сефадекса вместе с фронтом элюата. [c.220]

    Большие размеры макромолекул полимеров обусловили и еще одну важную особенность их в сравнении с низкомолекулярными веществами той же химической природы. Уже у пропана могут быть два структурных изомера — нормальный и ызо-пропап. Огромная макромолекула полимера может быть линейной и разветвленной, т. е. иметь боковые ответвления от основной цепи. При этом молекулярная масса линейной и разветвленной молекул может быть одинакова, т. е. они являются изомерами. Физические и механические свойства полимеров, состоящих из линейных или из разветвленных макромолекул, сильно различаются (например, полиэтилен низкого и высокого давления). Наконец, несколько макромолекул полимера могут быть соединены между собой химическими связями, что приводит к еще большему отличию их свойств. Так получают сшитые, или сетчатые, полимеры (например, резину из каучука). Таким образом, в зависимости от формы и строения молекул полимеры могут быть линейными, разветвленными и сетчатыми (рис. 1). [c.9]

    Однако совместное применение электронной микроскопии и дифракции, что в этом случае оказалось весьма эффективным, позволило установить и существенное отличие в кристаллизации полимеров по сравнению с низкомолекулярными веществами. Это отличие основывается на том поразительном факте, твердо установленном и Келлером, и Фишером, что оси с (направление молекулярных цепочек), перпендикулярны поверхности кристалла, а направление осей а и совпадает соответственно с большой и малой диагоналями ромба. Дифракционная картина от таких кристаллов (фото 90) свидетельствует о высокой степени совершенства кристаллической решетки, что является неожиданным в связи с распространенными представлениями о плохой кристаллизуемости полимеров. [c.262]

    Соединение большого числа одинаковых или разных низкомолекулярных молекул в процессе химической реакции приводит к появлению у полимера целого комплекса новых физико-механических свойств — высокой упругости, эластичности, способности к пленко-и волокнообразованию. Наличие длинных цепных молекул, имеющих химические, т. е. прочные, связи вдоль цепи, и физические, т. е. слабые, связи между цепями, является наиболее характерным признаком полимеров. При этом большая молекула обладает определенной гибкостью. Цепная молекула полимера называется макромолекулой. Составляющие ее низкомолекулярные повторяющиеся структурные единицы, или звенья, образованы низкомолекулярными веществами, способными к многократному соединению друг с другом в результате химической реакции синтеза. Эти вещества называются мономерами, а их соединение в макромолекулу полимера происходит в результате химических реакций, протекающих по законам цепных или ступенчатых процессов. Очевидно, что степень полимеризации, т. е. число мономерных звеньев в одной макромолекуле, определяет молекулярную массу полимера, которая составляет десятки, сотни тысяч и миллионы углеродных единиц и равна молекулярной массе исходного мономера, умноженной на степень полимеризации. [c.8]


    ОТ 16 ДО 700 занимает 5 мин. При этих условиях погрешность определения массовых чисел более 300 составляет 0,001%, а массовых чисел менее 300 — не более 0,003 а.е. м. Большие скорости сканирования, например, требуемые при масс-спектрометрии в сочетании с ГХ, приводят к сильному снижению чувствительности. Такие чувствительности достаточны для исследований с низким разрешением низкомолекулярных веществ, но недостаточны для изучения с высоким разрешением веществ молекулярной массы более 300. [c.255]

    В последние годы все большее распространение получает хроматографическое разделение веществ по их молекулярному весу, причем первое место среди таких вариантов хроматографии принадлежит гель-фильтрации на сефадексах . Сефадекс представляет собой полусинтетический -сорбент полисахаридной природы, гранулы которого обладают порами определенного размера, так что диффузия внутрь этих гранул возможна только для молекул, величина которых не превышает величину пор. Поэтому сефадекс работает как своего рода молекулярное сито , задерживающее проникающие внутрь гранул низкомолекулярные вещества и не задерживающее полимеры. Гель-фильтрация незаменима для быстрого отделения полимера от низкомолекулярных примесей (неорганических солей, мономеров и т. д.). Ее применяют и для разделения полимеров, причем одновременно можно приблизительно оценить их молек лярный вес, так как существует набор сефадексов, различающихся величиной пор. Есть все основания полагать, что в химии полисахаридов этот перспективный метод будет находить все большее применение. Особенно интересным является использование сефадексов для разделения высоко- и низкомолекулярных осколков, образующихся при расщеплении биополимеров различными реагентами , и для выделения полисахаридов из различных природных источников Хроматография на модифицированных сефадексах, обладаюш.их ионообменными свойствами, например на диэтиламиноэтилсефадексе, также может служить эффективным приемом фракционирования полисахаридов . [c.487]

    В полимерах простейшими самостоятельными элементами в структурном смысле являются сегмент и макромолекула, поэтому при" характеристике структурообразования необходимо уточнить, по отношению к какому структурному элементу это делается. Возможны случаи существования дальнего порядка в полимерах но отношению к сегментам при отсутствии такового для макромолекул. Соизмеримость сегментов с молекулами низкомолекулярных веществ позволяет считать, что области ближнего порядка в расположении сегментов должны иметь размеры, сравнимые с размерами роев в низкомолекулярных жидкостях или стеклах, а именно, не превышать величины нескольких межмолекулярных расстояний. Область ближнего порядка в расположении макромолекул, соизмеримая с размерами последних, при достаточно высокой их молекулярной массе должна достигать больших размеров и сохранять асимметричность такого же порядка, как и в индивидуальных макромолекулах. Однако замедленный характер конформационных превращений макромолекул затрудняет образование такой структуры. [c.67]

    Интенсивность светорассеяния р-ра ми П., не содержащими низкомолекулярных солей, ненамного превышает интенсивность света, рассеянного р-рами низкомолекулярных веществ. Это предъявляет высокие требования к очистке р-ра от посторонних частиц, рассеивающих свет, что является трудной задачей в случае водных сред. Кроме того, рассеивание света бессолевыми р-рами П. не описывается ур-нием, используемым при изучении р-ров полимерных неэлектролитов, и из данных светорассеяния П. нельзя определить соответствующие молекулярные параметры (мол, масса, радиус инерции). Однако из этих данных получают, напр., значение осмотич. коэффициента. [c.49]

    Считается, что металлы по своей молекулярной структуре гидро-фобны, и гидрофильность их поверхностям сообщает присутствие окислов и сорбированых газов /56/. Окисные пленки в естественных условиях содержатся практически на всех металлах, за исключением золота, платины и серебра. На железе окисные пленки имеют толщину 1,5-15 нм, иа алюминии- 5-20 нм. Удаление окислов шлифованием в присутствии воды приводит к увеличению краевого угла смачивания поверхности водой /62/ и, следовательно, к гидрофобизации поверхности. Металлы и их окислы относятся к веществам с высокой поверхностной энергией, превышающей 500 мДж/м , тогда как органические пластмассы и низкомолекулярные вещества, как правило, имеют более низкие значения этой величины, порядка 25-70 мДж/м /56/. [c.104]

    Теория и принципы стабилизации полимерных материалов каучуков и резин низкомолекулярными веществами разработа ны достаточно глубоко [2, 19, 33]. Применение высокомолеку лярных стабилизаторов ограничивается их малой эффективно стью в твердых и жесткоцепных полимерах, в которых молеку лярные движения заторможены [19] в то же время эти ста билизаторы эффективны в области повышенных температур Каучуки и резины представляют собой наиболее интересный объект для использования высокомолекулярных стабилизаторов вследствие высокой молекулярной подвижности макромолекул. Практический интерес к таким стабилизаторам обусловлен необходимостью эффективной стабилизации систем, эксплуатирующихся в условиях воздействия высоких температур, в вакууме и других средах, вымывающих низкомолекулярные стабилизаторы. Вымывание и улетучивание приводит к непроизводительным физическим потерям стабилизатора, что в ряде случаев значительно снижает резерв их защитного действия [76]. При определении эксплуатационных характеристик резин необходимо учитывать как начальную эффективность стабилизаторов [133], так и ее изменение в зависимости от условий эксплуатации. [c.61]

    Процессы деструкции, приводящие к распаду молекулярных цепей и образованию продуктов со значительно пониженной молекулярной массой или низкомолекулярных веществ, протекают в полимерах под воздействием тепла, света, излучений высоких энергий, кислорода, озона, механических напряжений. [c.42]

    ГПХ находит широкое применение во фракционировании макромолекул. В последнее время этот метод стал применяться в промышленности для определения молекулярного веса и молекулярновесового распределения полимеров, а также при изучении синтеза [24], переработки [25] и деструкции полимеров [26]. Однако в равной степени ГПХ можно использовать и при работе с низкомолекулярными веществами, такими, как олигомеры, мономеры и многие неполимерные соединения. Действительно, методом ГПХ может быть получено наивысшее разрешение в низкомолекулярном диапазоне. Это молено видеть на примере разделения триглицеридов (рис. 7.11). При разделении веществ, молекулярный вес которых отличается на АМ у = 40), наивысшее разрешение проявляется при вымывании низкомолекулярных соединений (высокие к ). Методом ГПХ можно разделить сколь угодно малые молекулы. Хендриксон [11] провел разделение методом ГПХ легких газов. Используя только одну колонку длиной 3,6 м, он разделил 12 компонентов с молекулярным весом от 76 до 500. [c.200]

    Такие исследования могут проводиться с веществами независимо от размера их молекул. Некоторые вещества, известные под названием полимеры , имеют молекулярный вес, значительно превышающий молекулярный вес простых соединений. Именно это различие и обусловливает многие необычные и часто ценные свойства полимеров. К данному классу веществ принадлежат все эластомеры (натуральный и синтетические каучуки), текстильные волокна, материалы, объединенные под названием пластики , а также белки и многие другие природные продукты. Было бы наивным предполагать, что все особые свойства таких материалов являются следствием только лишь их высокого молекулярного веса. Большое значение имеют также и другие факторы, оказывающие влияние на свойства низкомолекулярных веществ,—полярность, способность кристаллизоваться и т.п. Однако, если бы молекулярный вес веществ этого класса не был столь большим, они не имели бы присущих им специфических свойств. Метилметакрилат, например, является [c.11]

    Пики на кривой в области высоких значений М могут свидетельствовать о присутствии гель-компонентов, в то время как такие же пики в области низких значений М обычно означают, что в полимер было введено соединение с низкой молекулярной массой. При этом два образца могут иметь одинаковую вязкость, но один из них — материал с нормальным ММР, а другой — смесь высоко- и низкомолекулярных веществ (рис. 4.5). Во втором случае полимеры могли быть смешаны, например в случае необходимости придания образцу требуемой вязкости. Однако, хотя в обоих случаях вязкость может быть одинаковой, физические характеристики пленок, изготовленных из смеси фракций с различной вязкостью, обычно значительно ниже (табл. 4.1). [c.106]

    Так, например, изучение сорбции или процесса растворения низкомолекулярных веществ полимерами показало, что образующиеся при этом растворы являются истинными равновесными растворами и подчиняются термодинамическим закономерностям, как и низкомолекулярные системы. Это происходит потому, что полимер ведет себя в смеси (растворе) так, как будто индивидуальной кинетической единицей является не вся макромолекула полимера, а отдельные отрезки длинной молекулы, способные независимо перемещаться относительно друг друга. Отсюда следует, что истинная молярная доля полимера в смеси меньше, чем теоретически вычисленная по закону Рауля. Отклонение от закона Рауля позволило рассчитать эффективную или кажущуюся молекулярную массу полимера, т. е. величину термодинамического сегмента, играющего роль отдельной молекулы в процессе сорбции. Причем величина сегмента зависит также от концентрации раствора, из которого ведется сорбция, меняясь от величины, близкой к одному звену полимера в очень концентрированных растворах, до величины всей макромолекулы в бесконечно разбавленном растворе. Так, для изопарафинов кажущаяся молекулярная масса составляет 1000, т. е. на один сегмент приходится 10—12 мономерных звеньев, а для жесткоцепных полимеров, таких, как поливиниловый спирт и полиакриловая кислота, молекулярная масса сегмента близка к истинной молекулярной массе полимера, что свидетельствует о высокой жесткости данных макромолекул. Появление в полимерной цепи радикалов —СНз, —С2Н5 в ряде случаев повышает ее гибкость, о чем свидетельствует уменьшение величины сегмента. Это было доказано сорбционным методом при изучении группы полиолефинов гибкость возрастает от полиэтилена к полибутилену сегмент полиэтилена состоит из 60, полипропилена из 40, полибутилена из 30 углеродных атомов. [c.58]

    Высокомолекулярные соединения в отличие от низкомолекулярных веществ обладают особыми физико-механическими свойствами. Эти свойства обусловлены цепным строением и высокой молекулярной массой полимерных молекул. [c.528]

    Расплавляются при нагревании кристаллические (точнее, полукристаллические) полимеры. Для аморфных полимеров характерно постепенное размягчение. Температура плавления является величиной, зависящей от строения решетки твердого вещества, и представляет собой температуру, при которой кристаллическая решетка нагреваемого твердого вещества разрушается вследствие усиливающегося теплового движения атомов или групп атомов. Температура плавления тем выше, чем сильнее межмолекулярные силы и чем плотнее упаковка решетки. Образование водородных связей вызывает повышение температуры плавления. Изомеры предельных углеводородов с прямой цепью имеют более высокую температуру плавления, чем соответствующие изомеры с разветвленной цепью. В пределах каждого гомологического ряда температура плавления возрастает с увеличением молекулярного веса до определенного предела. В отличие от низкомолекулярных веществ полимеры плавятся в некотором интервале температур, что обусловлено их неоднородностью. [c.69]

    Во-вторых, может быть расмотрена классификация химических реакций в полимерах в зависимости от молекулярной природы реагентов при различной их химической природе полимер — низкомолекулярное вещество функциональные группы внутри одной макромолекулы функциональные группы разных макромолекул химический распад (деструкция) макромолекул. По этой классификации за основу взято исходное состояние реагирующих компонентов по высоко- или низкомолекулярной природе обоих или одного из них. Конечное состояние может быть также высоко- или низкомолекулярным (последнее — в случае деструкции макромолекул). [c.218]

    Признания принципа эксклюзии как единственной новы гель-хроматографии явно недостаточно для 1интерпретации всех экспериментальных данных. В некоторых случаях для объяснения эффекта разделения приходится рассматривать взаимодействие анализируемых веществ с фазой геля. Уже неоднократно отмечалось, что фаза геля с высокой концентрацией полимера существенно отличается по своим свойствам от подвижной фазы. Явления, которые нельзя объяснить, основываясь на концепции эксклюзии, чаще наблюдались при хроматографировании на плотных гелях. На это мы уже ссылались в предыдущем разделе при рассмотрении тех случаев, когда логарифм коэффициента распределения оказывался прямо пропорциональным молекулярному весу. Тогда речь также шла о хроматографировании относительно низкомолекулярных веществ на сравнительно плотных гелях. г [c.125]

    В заключение этого раздела мы коснемся еще одного аспекта рассматриваемой проблемы, а именно вопроса о роли некоторых эффектов цепи для реакций подвешенных функциональных групп. Этот вопрос выходит за рамки рассматриваемой в настоящем разделе проблемы и имеет общее значение для полимерной химии. Он подробно рассмотрен в работе [50]. Мы приведем лишь один пример, где эффект, связанный с цепным строением реагирующих молекул, проявляется при полифункциональной поликонденсации. При исследовании влияния среднечисленной функциональности на скорость процесса отверждения эпоксидных олигомеров новолачными смолами было обнаружено [51], что скорость реакции существенно зависит от функциональности исходных компонентов, причем чем выше функциональность отверди-теля, тем ниже энергия активации скорости реакции. Различаются также эффективные энергии активации для систем с различной функциональностью (рис. 10). Это явление связано с очень высокой само ассоциацией молекул полифенолов, которая, естественно, увеличивается при возрастании молекулярной массы или, что то же, функциональности новолачных смол. Этот эффект проявляется не только в реакциях сложных молекул, но даже при реакции полифенола с низкомолекулярным веществом — эпихлоргидрином— при эноксидировании новолачных смол предельная степень эноксидирова-ния резко падает с увеличением функциональности исходных новолачных смол. [c.69]

    Согласно полипептидной теории, молекула белка построена из одной или нескольких связанных между собой полипептид-ных цепей, состоящих из аминокислотных остатков. Но насколько велико число аминокислотных остатков в молекуле белка, или каков молекулярный вес белков Для ответа на этот вопрос ученым пришлось преодолеть очень большие трудности. Де ло в том, что в связи с высоким молекулярным весом белков обычные методы определения молекулярных весов, используемые для низкомолекулярных соединений, при работе с белками не дают удовлетворительных результатов. Например, такой классический метод опрелеления молекулярного веса, как измерение понижения давления пара при прибавлении к чистой воде какого-либо растворяющегося в ней вещества, к белкам применим быть не может, так как, если растворить 1 г вещества с молекулярным весом 10 000 в 100 г чистой воды, понижение давления пара при 25° будет равно 0,00043 мм ртутного столба. Эта величина настолько мала, что ее нельзя измерить. Кроме того, даже следы примесей низкомолекулярных веществ к белкам резко изменяли бы эту величину. Другой метод, основанный на измерении повышения температуры кипения раствора белков по сравнению с температурой кипения чистого растворителя, также неприменим, так как белки свертываются и [c.205]

    Однако в отличие от низкомолекулярных веществ в полимерах наблюдается не температура плавления, а скорее температурный интервал плавления, положение которого может изменяться в зави-Скмости от -молекулярной массы полимера и размеров микрокристаллитов, поверхностной энергии и концентрации дефектов в микрокристаллитах и других характеристик надмолекулярной структуры образца. Кроме того, па температуру плавления полимеров значительное влияние оказывают условия эксперимента (нанример, скорость нагревания и т. п.), что послужило причиной того, что раньше измерения температуры плавления проводили при очень низких скоростях нагревания с целью максимального приближения к равновесным значениям температуры плавления. В настоящее время эксперименты, напротив, проводят при достаточно высоких скоростях нагревания с. тем, чтобы свести к минимуму возможные изменения надмолекулярной структуры полимера в процессе измерений (в частности, изменение размеров кристаллитов). Строго говоря, вопрос о надежных значениях равновесных температур плавления для различных полимеров остается еще до конца не выясненным. [c.165]

    Выше (тл. И) были рассмотрены химические реакции, позволяющие широко изменять, или модифицировать, свойства полимеров. Одновременно было отмечено, что целый ряд химических реакций приводит к ухудшению свойств полимеров. Сюда относятся, прежде всего, реакции, связанные с распадом молекулярных цепей, приводящие к образованию продуктов со значительно пониженной молекулярной массой или низкомолекулярных веществ. Эти реакции называются реакцкядти деструкции. Они протекают в полимерах под воздействием тепла, света, излучений высоких энергий, кислорода, озона, механических напряжений и др. [c.177]

    Как следует из ур-нпя (7) и из рис. 2, для достижения достаточно высоких значений молекулярного веса необходимо тщательное удаление низкомолекулярного вещества. Так, для нолуче- [c.79]

    Совершенно очевидно, что низшие гомологи, являясь низкомолекулярными веществами, не должны обладать высокоэластическим состоянием. Их поведение изображено соответственно кривыми 1—4. Однако при возрастании степени. полимеризации вязкость должна такл е увеличнзаться. Поэтому область перехода из застеклованного состояния в вязкотекучее смещается в сторону высоких температур с ростом молекулярного веса полимергомологов. [c.42]

    Простой способ синтеза некоторых полиэфиров с высоким молекулярным весом состоит в проведении поликонденсации в жидкой фазе. Для его осуществления необходим ряд условий растворитель должен хорошо растворять образующийся полиэфир и возаюжно меньше растворять выделяющиеся при реакции низкомолекулярные вещества (вода, спирт н т. п.) молекула растворителя не должна [c.31]


Смотреть страницы где упоминается термин Молекулярный вес высоко и низкомолекулярных веществ: [c.377]    [c.452]    [c.452]    [c.74]    [c.136]    [c.188]    [c.402]    [c.386]    [c.53]    [c.90]    [c.12]   
Основы химии высокомолекулярных соединений (1961) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Вещества молекулярные



© 2025 chem21.info Реклама на сайте