Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рекомбинационный мутантов фага

    Связь между интеграцией и репликацией обнаружена при изучении мутантов фага Ми, неспособных к интеграции. Оказалось, что и репликация у этих мутантов нарушена. Мутации, определяющие- такую дефектность фага, локализуются в одном из двух генов, А или В, необходимых для репликации фага. Таким образом, интеграция, по-видимому, зависит от функции репликации, а не от специальных рекомбинационных ферментов (как у фага лямбда). [c.469]


    Теперь мы можем отыскать спонтанные или индуцированные акридинами ревертанты к дикому типу, исходя из супрессорных мутантов. Снова путем генетической рекомбинации с диким фагом убеждаемся в том, что возврат к дикому тину произошел благодаря образованию второй мутации (супрессора к супрессору, на этот раз со знаком +) недалеко от первой. Разделив обе точечные мутации в рекомбинационном эксперименте, мы можем изучить их в отдельности, убедиться в том, что они отличны от дикого типа, и найти их локализацию на генетической карте фага Т4. Процесс можно продолжать как угодно долго, все время отыскивая супрессорные мутанты все более высокого порядка. В итоге получается путем отбора спонтанных ревертантов и под действием акридинов около 80 точечных мутантов. Все они по фенотипу были г, но их можно было разбить однозначно на две группы, приписав одной знак -1-, другой —, в соответствии с числом этапов при их получении. [c.414]

    Генетический анализ состоит в экспериментальном изучении отношений, существующих между мутантами. Для определения характера этих отношений используются два основных приема,-рекомбинационный тест и тест на комплементацию. Рекомбинационный тест, как мы уже отмечали в предыдущем разделе, определяет взаимное пространственное расположение мутаций на генетической карте. Комплемента-ционный тест, с другой стороны, определяет функциональные отношения мутантов. Все -//-мутанты обладают одинаковым фенотипом (табл. 6.1). Одинаковы ли их генетические функции Для ответа на этот вопрос клетки Е. соН К (А) заражали различными парными комбинациями мутантов гП, как это схематически изображено на рис. 6.6. Если в такой дважды инфицированной клетке возникает потомство фага, то это означает, что каждый из двух мутантных фагов осуществляет функцию, которую не в состоянии осуществлять второй мутант. Такие два мутанта называют комплементарными. С другой стороны, если в такой дважды инфицированной клетке потомства фагов не возникает, то это означает, что оба мутанта не способны осуществлять одну и ту же функцию. [c.166]

    Справедливость этого вывода была подтверждена сначала данными рекомбинационного анализа стабильные мутации (делеции), введенные в скрещивание, сокращали генетические расстояния между фланкирующими мутациями, т. е. расположенными справа и слева от делеций. В дальнейшем выпадение участка ДНК продемонстрировали на гетеродуплексах, полученных путем гибридизации ДНК из фага дикого типа и из делеционного мутанта. При этом в участке, соответствующем делеции rll, образовывалась однонитевая петля за счет лишней ДНК из дикого типа, хорошо различимая в электронный микроскоп. [c.376]

    Для того чтобы осуществить скрещивание двух мутантов фага, применяется одновременная адсорбция двух гнтаммов фагов на бактериях. Необходимо создать такие условия, чтобы различные частицы фага произвели инъекцию своей ДНК в одну и ту же клетку. С этой целью берут значительный избыток числа частиц фагов над числом клеток в миллилитре и, кроме того, в среду, в которой происходит заражение, добавляется агент, тормозящий синтетические процессы в клетках (K N). Это делается для того, чтобы инъекция ДНК первой частицей фага не помешала вторичной инъекции следующим фагом. Когда метаболические процессы в клетке не остановлены, подобное взаимное влияние имеет место. Когда стадия заражения прошла, культура бактерий осво--бождается от избытка фагов с помощью центрифугирования или с помощью имунной антисыворотки и переносится на нормальную питательную среду, на которой идет созревание и лизис клеток. Последний этап — нанесение культуры на чашки Петри, специально приготовленные для отыскания рекомбинантов. Вся процедура достаточно проста. В процессе созревания одного поколения фагов рекомбинационному процессу подвергается практически каждая хромосома фага, а часто происходят и тройные рекомбинации (Херши),которые обнаружатся, если провести заражение клеток тремя типами мутантов, отличающимися по трем разным локусам. Последний факт показал не только, что в процессе генетической рекомбинации участвуют все молекулы ДНК фага, но более того, — что рекомбинация повторяется многократно с каждой молекулой в течение одного цикла созревания. [c.368]


    Наоборот, рекомбинанты к дикому типу будут превосходно жить на К12. Подсчет рекомбинантов ведется на нулевом фоне (в принципе) благодаря тому, что оба родительских фага — мутанты гП, отсюда и прекрасная чувствительность метода. Можно измерить число рекомбинантов, даже если вероятность события 10 . Собственно говоря, предел чувствительности ставится спонтанными ревертантами — возвратными мутациями к дикому типу. Из изученных Бензером свыше 3000 различных мутантов типа гП некоторая часть оказалась непригодной для рекомбинационных экспериментов из-за высокого уровня шумов (большого количества сионтанных ревертантов), одпако большинство мутаций, полученных облучением, действием химических мутагенов пли спонтанно, оказалось вполне стабильно. Эти мутации в количестве примерно 2000 и были расположены на генетической карте в линейной последовательности. Подробное изучение тонкой структуры генетического вещества обнаружило ряд важных обстоятельств. Вся область гП имеет длину в 8 единиц и распадается в а две функциональные области А и В. Бензер назвал их цистронами на основании того, что их можно различить с помощью is—trans-теста. Если инфицировать бактерию К12 двумя мутантами фага, из которых один поврежден в области А, второй поврежден в области В (оба являются гП-мутантамп), то вместе они способны развиваться на клетках К12. [c.377]

    Генетическая карта фага X, наиболее изученного из всех умеренных фагов, изображена на рис. 132. Карта получена с помощью рекомбинационных экспериментов при множественной инфекции чувствительных (нелизогенных) клеток одновременно несколькими мутантами фага (число актов рекомбинации у фага X порядка [c.383]

    Рассмотрим теперь вкратце не совсем понятные химические явления, лежащие в основе таких явлений, как генетическая рекомбинация, интеграция вирусной ДНК с геномом клетки-хозяина и исключение профага из хромосомы клетки-хозяина. О сложности процесса рекомбинации свидетельствует тот факт, что у мутантов, дефектных по способности к рекомбинации, мутации локализуются не в одном, а в нескольких участках (генах) хромосомы Е. oli-, соответствующие гены обозначаются через гесА, В, С, F, G и Н. Бактерии с мутациями в некоторых из этих генов необычайно чувствительны к ультрафиолетовому облучению, что свидетельствует об их неспособности репарировать (восстанавливать) повреждения ДНК, вызванные действием ультрафиолета (гл. 13, разд. Г, 2). Из этого следует, что некоторые из ферментов, обеспечивающих процесс рекомбинации, нужны клетке также и для восстановления повреждений, вызванных действием ультрафиолетового излучения. Однако специфические функции большинства продуктов этих генов все еще до конца не выяснены. Считают, что у Е. oli имеются две полноценные системы общей рекомбинации. В геноме фага Я, имеются гены, кодирующие другую рекомбинационную систему, функционирующую независимо от продуктов генов фага Я, inf и xis (рис. 15-15), необходимых для интеграции и исключения генетического материала вируса и обеспечивающих процессы сайт-специфической (для определенных участков геномов) рекомбинации между генами клетки-хозяина и вируса. [c.281]


Смотреть страницы где упоминается термин Рекомбинационный мутантов фага: [c.197]    [c.451]    [c.210]    [c.77]   
Современная генетика Т.3 (1988) -- [ c.174 , c.197 ]




ПОИСК







© 2025 chem21.info Реклама на сайте