Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосомы бактериальной клетки

Рис. 4.14. Интеграция (включение) фага лямбда в хромосому Es heri hia oli и его освобождение из хромосомы (исключение). В фаговой частице ДНК представлена линейной двойной спиралью с неспаренными комплементарными концами. В растворе или в бактериальной клетке липкие комплементарные концы связываются друг с другом, и разрыв в каждой цепи закрывается с помощью лигазы. После этого замкнутое двухцепочечное кольцо подходит к хромосоме (между генами gal и Ыо), обе двойные спирали разрываются и образовавшиеся свободные концы воссоединяются крест-накрест. В результате фаговая ДНК оказывается включенной (встроенной, или интегрированной) в хромосому хозяина. Фаг превратился теперь в профаг, и клетка стала лизогенной (в данном случае по фагу лямбда), В результате обратного процесса может произойти выключение ДНК фага и переход ее в автономное состояние. Рис. 4.14. <a href="/info/32962">Интеграция</a> (включение) фага <a href="/info/590442">лямбда</a> в хромосому Es heri hia oli и его освобождение из хромосомы (исключение). В фаговой частице ДНК представлена линейной <a href="/info/32844">двойной спиралью</a> с неспаренными комплементарными концами. В растворе или в <a href="/info/32980">бактериальной клетке</a> липкие комплементарные концы связываются друг с другом, и разрыв в каждой цепи закрывается с помощью лигазы. После этого замкнутое <a href="/info/1382244">двухцепочечное</a> кольцо подходит к хромосоме (между генами gal и Ыо), обе двойные спирали разрываются и образовавшиеся свободные концы воссоединяются крест-накрест. В результате фаговая ДНК оказывается включенной (встроенной, или интегрированной) в хромосому хозяина. Фаг превратился теперь в <a href="/info/33307">профаг</a>, и клетка стала лизогенной (в данном случае по фагу <a href="/info/590442">лямбда</a>), В результате <a href="/info/6230">обратного процесса</a> может произойти <a href="/info/1642462">выключение</a> ДНК фага и переход ее в автономное состояние.

Рис. 2,17. Репликация кольцевой бактериальной хромосомы и деление бактериальной клетки. В этой схеме предполагается однонаправленный механизм репликации ДНК, т.е. механизм с участием только одной репликативной вилки. Рис. 2,17. <a href="/info/32698">Репликация</a> кольцевой <a href="/info/32685">бактериальной хромосомы</a> и деление <a href="/info/32980">бактериальной клетки</a>. В этой схеме предполагается однонаправленный <a href="/info/611103">механизм репликации</a> ДНК, т.е. механизм с участием только одной <a href="/info/33376">репликативной</a> вилки.
    Начавшийся процесс репликации хромосомы бактерии продолжается до тех пор, пока не удвоится вся ДНК. В этом смысле бактериальная хромосома представляет собой единицу репликации — репликон. Другие молекулы ДНК, которые могут присутствовать в бактериальных клетках (см. гл. V), также представляют собой отдельные репликоны. [c.60]

    В начале 50-х годов Ледерберг открыл плазмиды — относительно малые циклические молекулы ДНК, содержащиеся в большинстве бактерий. Плазмиды существуют независимо от хромосомы бактериальной клетки и размножаются при делении клеток. Бактерии могут обмениваться плазмидами. Разработана [c.268]

    Конъюгация и трансформация — не единственные способы передачи генетического материала. Гены могут переноситься из одной бактериальной клетки в другую с помощью умеренных фагов. Такой перенос бактериальных генов получил название транс-дукции. Трансдукция оказывается возможной, если в процессе размножения фага одна из частиц случайно захватит фрагмент бактериальной хромосомы, как правило, содержащий очень небольшое число генов. Когда такая фаговая частица заражает бактерию-реципиент, бактериальная ДНК проникает в клетку таким же путем, как фаговая. Между трансдуцированной бактериальной ДНК и гомологичным участком бактериальной хромосомы может произойти обмен, и как следствие его возникают рекомбинанты, несущие небольшую часть генетического материала клетки-донора (рис. 40, А). Передача признаков с помощью фагов показана для бактерий, принадлежащих к разным родам. [c.152]

    В хромосоме бактериальной клетки имеются цистроны, в которых зафиксирована структура ферментов, — это структурные [c.496]

    Генетически фаг подобен клетке с одной хромосомой, т. е. гаплоиду. В настоящее время для многих организмов построены генетические карты. Методы, применяемые для построения генетических карт фага, сходны с теми, которые используются при составлении хромосомных карт высших организмов. Различие состоит в том, что скрещивание мутантов фага осуществляется не непосредственно, а путем одновременного заражения одной и той же бактериальной клетки двумя мутантными фагами. Расстояние между мутантными локусами на линейной генетической карте пропорционально частотам рекомбинаций, наблюдаемым при скрещивании. Чем выше частота рекомбинаций между двумя локусами, тем дальше друг от друга расположены эти локусы на генетической карте. Расстояния на карте могут [c.367]


    Деление прокариотной клетки начинается, как правило, спустя некоторое время после завершения цикла репликации молекулы ДНК. Вероятно, репликация бактериальной хромосомы запускает какие-то процессы, ведущие к клеточному делению. Более детальное изучение у разных видов прокариот взаимосвязи между репликацией ДНК и делением клетки не привело к однозначным результатам. Получены данные о том, что сигналом к клеточному делению служит начало репликации ДНК, ее завершение или репликация определенного локуса бактериальной хромосомы. Таким образом, в норме существует вполне определенная временная связь между репликацией хромосомы и делением бактериальной клетки. Воздействия различными химическими веществами и физическими факторами, приводящие к подавлению репликации ДНК, останавливают и клеточное деление. Однако при некоторых условиях связь между обоими процессами может быть нарушена, и клетки способны делиться в отсутствие синтеза ДНК. Это удалось получить введением определенных мутаций в генетический аппарат бактериальной клетки. [c.61]

    У эукариотических организмов ДНК локализована преимущественно в ядрах клеток у прокариот она образует довольно компактный нуклеоид, в котором содержится вся хромосома бактериальной клетки. Такие клеточные органеллы, как митохондрии и хлоро-пласты, имеют свою собственную ДНК- Кроме того, в цитоплазме многих прокариот и низших эукариот обнаруживаются внехромо-сомные ДНК — плазмиды. [c.10]

    Таким образом, процессы транскрипции и трансляции, служащие для выражения в онтогенезе генетической информации, не приводят к наследованию изменений, возникающих при их функционировании. Только изменения, происходящие в молекулах ДНК, могут сохраняться в ряду поколений, поскольку они воспроизводятся в процессе репликации. Следовательно, в основе эволюции прокариот лежит способность к изменению только их генетического материала. У прокариот весь генетический материал, необходимый для жизнедеятельности, локализован в одной хромосоме, т.е. бактериальная клетка гаплоидна. В определенных условиях в клетках бактерий может содержаться несколько копий хромосомы. [c.143]

Рис. 7.9. Образование трансдуцирующих фагов Xgal и ХЫо в результате неточного вырезания профага из хромосомы бактериальной клетки. Рис. 7.9. Образование трансдуцирующих <a href="/info/167030">фагов</a> Xgal и ХЫо в результате неточного вырезания <a href="/info/33307">профага</a> из <a href="/info/32685">хромосомы бактериальной</a> клетки.
    Как редкое событие, происходящее с частотой 10" —10" , плазмиды или отдельные гены, входящие в их состав, могут включаться в бактериальную хромосому. Поскольку ДНК плазмиды и бактериальной клетки не имеют одинаковых нуклеотидных последовательностей, т. е. не являются гомологичными, рекомбинация между ними происходит не по механизму обмена, а по механизму встраивания (рис. 40, ). Рекомбинации такого типа происходят также с участием транспозонов и 18-элементов при их перемещении (транспозиции) в пределах хромосомы. Встраивание плазмид и мигрирующих элементов помимо того, что приводит к введению в хромосому дополнительного генетического материала, может вызывать перестройку бактериального генома  [c.152]

    Плазмиды. Они представляют собой кольцевые ДНК, локализованные в бактериальных клетках. И хотя они занимают всего лишь несколько процентов генетического материала, их биологическая значимость достаточно велика. Они содержат информацию о резистентности к различным токсическим веществам, например к антибиотикам, а также участвуют в усвоении клеткой некоторых питательных веществ. В бактериальных клетках количество плазмид варьирует в пределах от единиц до сотни, причем их репликация автономна и не связана с репликацией хромосомы. Плазмиды являются гораздо более мобильным хранилищем генетического материала, чем хромосома, и при конъюгации клеток обмен генами происходит только за счет этих структур. [c.500]

    На рис. 2,17 показано, как можно представлять себе репликацию бактериальной хромосомы и деление бактериальной клетки в данной схеме предполагается, что репликация всего кольца ДНК происходит в одном направлении. [c.40]

    После проникновения хромосомы умеренного фага в клетку-хозяина либо немедленно начинается размножение фага (литический цикл), либо фаг переходит в состояние профага. Литическая фаза жизненного цикла умеренного фага соответствует полному жизненному циклу литического фага. Литические фаги названы так потому, что их размножение приводит к разрушению (лизису) бактериальной клетки. [c.482]

    Трансдукция — передача инфицирующими бактериальную клетку бактериофагами частей бактериальной хромосомы другим бактериям, которые вследствие этого генетически изменяются. [c.465]

    Обычно бактерии размножаются простым клеточным делением, т. е. количество ДНК в хромосоме удваивается, клетки делятся и дочерние клетки получают идентичные хромосомы. Однако, как показали в 1946 г. 1едерберг и Татум [13а], бактерии могут размножаться и половым путем. Прямых данных о спаривании у бактерий первоначально не было, однако было показано, что если смешать клетки двух различных мутант-лых штаммов К-12 Е.соИ и выращивать их совместно в течение нескольких поколений, то некоторые бактерии вновь обретут способность к росту на минимальной среде. Поскольку каждый из этих штаммов содержал по одному дефектному гену, образование особи, не несущей ни одного из этих дефектов, могло произойти лишь в результате комбинирования генетического материала обеих штаммов. Именно эти опыты по- служили основанием для вывода о существовании у бактерий конъюгации. В дальнейшем было показано, что в процессе конъюгации может происходить истинная генетическая рекомбинация. Это означает, что гены двух спаривающихся клеток могут быть интегрированы с образованием единой цепи бактериальной ДНК- [c.189]


    Первый тин — высокомолекулярная рибосомная РНК (будем называть ее просто РНК). Она составляет примерно 90% клеточной РНК, является сравнительно медленно синтезируемым веществом, вполне устойчива. В опытах Херши, Месельсона и Дэверн -было показано путем переноса клеток с тяжелой среды на легкую , что изотопно меченная РНК переходит при делении клетки в дочерние клетки без изменений и может быть найдена в четвертом и даже пятом поколении. Изотопный состав унаследованной РНК нисколько пе меняется, хотя клетки живут и синтезируют вещества с легкими изотопами. В чем точно выражается его функция, сказать трудно. Пока известно лишь, что РНК составляет до 60% тела рибосом (остальные 40% — белок), т. е. выступает как структурный материал. Показано, что в хромосоме бактериальной клетки имеется специальный генетический локус, на котором синтезируется или реплицируется рибосомная РНК. [c.429]

    Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной нитью), приводящая к удвоению молекул ДНК бактериального ядра — нуклеоида. Репликация хромосомной ДНК осуществляется от начальной точки оп (от англ. origin — начало). Хромосома бактериальной клетки связана в области оп с цитоплазматической мембраной. Репликация ДНК катализируется ДИК-полимеразами. Сначала происходит раскручивание (деспирализация) двойной цепи ДНК, в результате чего образуется репликативная вилка (разветвленные цепи) одна из цепей, достраиваясь, связывает нуклеотиды от 5 - к З -концу, другая — достраивается посегмептно. [c.48]

    Вся генетическая информация прокариот содержится в одной молекуле ДНК, имеющей форму ковалентно замкнутого кольца и получившей название бактериальной хромосомы. Длина молекулы в развернутом виде может составлять более 1 мм, т. е. почти в 1000 раз превышать длину бактериальной клетки. Длительное время считали, что в распределении нитей ДНК бактериальной хромосомы не прослеживается никакой закономерности. Однако если исходить из того, что молекула ДНК образует беспорядочный клубок, трудно объяснить процесс репликации и последующее распределение образовавшихся хромосом по дочерним клеткам. Специальные исследования показали, что хромосомы прокариот представляют собой высокоупорядоченную структуру, имеющую константу седиментации 1300 — 20005 для свободной и 3200—70005 для связанной с мембраной формы. В том и другом случае часть ДНК в этой структуре представлена системой из 20— 100 независимо суперспирализованных петель. В обеспечении супер-спирализованной организации хромосом участвуют молекулы РНК. [c.55]

    Поскольку транспозоны не способны к автономной репликации, для переноса их из одной бактериальной клетки в другую необходим так называемый вектор (переносчик). Векторами могут служить плазмиды или бактериофаги. Следует упомянуть, чТо колифаг мю ( фаг-мута-тор ), подобно транспозону, обладает способностью внедряться в различные участки бактериальной хромосомы и вызывать мутации. По этой причине фаг мю был назван гигантским транспозоном , и его используют в повседневной практике получения мутантов Е. oli. [c.447]

    А — бактериальная клетка содержит частично реплицированную хромосому, прикрепленную к мембране в точке (или точках) репликации Б — репликация хромосомы завершена. В бактериальной клетке две дочерние хромосомы, каждая из которых прикреплена к ЦПМ. Показан синтез клеточной стенки и ЦПМ В — продолжаюшийся синтез мембраны и клеточной стенки приводит к разделению дочерних хромосом. Показано начало деления клетки путем образования поперечной перегородки 1 — ДНК 2 — прикрепление хромосомы к ЦПМ 3 — ЦПМ 4 — клеточная стенка 5 — синтезированный участок ЦПМ 6 — новый материал клеточной стенки [c.58]

    Бактерии имеют клеточную организацию и у них имеются нуклеиновые кислоты обоих типов — РНК и ДНК, из которых ДНК представлена в виде одиночной (кольцевидной) хромосомы Большинство из них размножается на питательных средах (вне организма), а если среди бактерий и есть безусловные (облигатные) паразиты, приближающиеся по данному признаку к вирусам (хла-мидии, спироплазмы, риккетсии), то паразитизм их отличается по своему механизму — его можно назвать клеточным Паразитизм вирусов развивается на генетическом уровне Таким образом, бактерии — это организмы, состоящие из функционально связанных структур, в том числе, генетических Несмотря на то, что генетические структуры бактериальной клетки функционируют полноценно, они не сгруппированы в форме отграниченного ядра, и поэтому бактерии отнесены к предъядерным (прокариотическим) организмам [c.25]

    В клетке Е oli нить ДНК имеет размеры 1,4 10 хЗ,0 нм, а массу 1 10 г В разомкнутом состоянии длина ее составит примерно 1,4 мм, то есть подобная ДНК приблизительно в 500 раз длиннее бактериальной клетки, вмещающей эту ДНК Такая хромосома кишечной палочки заключает в себя информацию, достаточную для кодирования 4500 белков, значительная часть которых будет представлена ферментами [c.46]

    Представление об изменчивости и наследственности бактерий нельзя составить без знания некоторых положений молекулярной генетики прокариотической клетки. В основе процессов приспособления микробных культур к изменяюшимся экологическим условиям лежат изменчивость и наследственность, являющиеся разделами генетики бактерий. При изложении цитологии бактериальной клетки уже рассматривалась структура ДНК и РНК и их роль в жизни клетки. Характерное строение ДНК сохраняется у каждого вида и передается потомству из поколения в поколение, как и другие признаки. ДНК бактерий представляет собой двунитчатую спираль, замыкающуюся в кольцо. Кольчатая нить ДНК бактерий, расположенная в ну-клеоиде, не содержит белка. Такое кольцо ДНК соответствует хромосоме эукариотической клетки. Известно, что в хромосоме эукариотических клеток, кроме ДНК, всегда содержится белковый компонент. Отсюда следует, что понятие хромосомы у эукариотов несколько отлично от понятия хромосомы бактерий. Нить ДНК, представляющая собой хромосому бактерий, разумеется, у разных видов различается. Сахарофосфатный компонент ДНК у всех видов бактерий одинаков расположение азотистых оснований и их комбинация, напротив, различаются у разных видов. [c.102]

    Наследственные свойства бактерий или отдельные признаки закодированы в единицах наследственности — генах, линейно расположенных в хромосоме вдоль нити ДНК. Следовательно, ген является фрагментом нити ДНК. Каждому признаку соответствует определенный ген, а часто еще меньший отрезок ДНК — кодон. Иначе говоря, в нити ДНК в линейном порядке расположена информация обо всех свойствах бактерий. При этом у бактерий есть еще одна особенность. В ядрах эукариотов содержится обычно несколько хромосом, число их в ядре постоянно у каждого вида. Нуклеоид бактерий содержит лишь одно кольцо из нити ДНК, т. е. одну хромосому. Однако запасом информации, заключенным в одной хромосоме или в кольцеобразно сомкнувшейся двунитчатой спирали ДНК, сумма наследственных признаков бактериальной клетки не исчерпывается. У многих видов бактерий открыты плазмиды — внехро-мосомные факторы наследственности. Плазмиды содержат ДНК, также несущую генетическую информацию, передаваемую от материнской клетки к дочерней. [c.102]

    Хромосомы прокариотических клеток -это единичные очень длинные молекулы ДНК В прокариотических клетках ДНК гораздо больше, чем в вирусах. К примеру, одна клетка Е. oli содержит почти в 200 раз больше ДНК, чем частица бактериофага А,. Результаты генетических экспериментов, а также прямые микроскопические наблюдения показали, что ДНК Е. соИ-это одна очень длинная молекула Она представляет собой ковалентно за мкнутое двухцепочечное кольцо с мол массой 26 10 . Эта ДНК состоит при близительно из четырех миллионов пар оснований, а ее физическая длина равна 1400 мкм (= 1,4 мм), что в 700 раз превышает размеры самой клетки Е. соН (2 мкм). В этом случае мы снова видим, что молекула ДНК плотно упакована, поскольку она целиком должна уместиться в ядерной зоне (разд. 2.5) клетки Е. соИ. Есть основания считать, что ДНК бактериальной клетки прикреплена в одной или нескольких точках к внутренней поверхности клеточной мембраны. [c.869]

    Еще одним типом генетической рекомбинации является трансдущия (рис. 30-12). Если бактериальная клетка заражена некоторыми ДНК-содержащи-ми фагами, то небольшая часть ее хромосомы может ковалентно присоединиться к фаговой ДНК, реплицироваться вместе с ней и таким образом встраиваться в ДНК дочерних фаговых частиц. Когда такие частицы заражают другую клетку, фаговая ДНК приносит в эту клетку участок хромосомы первой клетки. Трансдук-ция (что означает перенос )-это природный процесс, который в лабораторных условиях используется для картирования бактериальных хромосом. [c.975]

    Лизогенные бактерии обладают потенциальной способностью продуцировать фаги, но эту способность нельзя обнаружить ни морфологическим, ни серологическим исследованием. Фаг в таком неинфекционном состоянии, передающейся только дочерним клеткам при делении, называют профагом. Подобно другим признакам бактериальной клетки, наличие в ней профага наследуется. Поскольку все потомство лизогенной клетки тоже лизогенно, профаг, очевидно, должен реплицироваться синхронно и регулярно вместе с хромосомой клетки-хозяина (рис. 4.13). [c.147]

    В настоящее время известны по меньшей мере три разных механизма рекомбинации попавшей в бактериальную клетку чужеродной ДНК с бактериальной хромосомой (или с плазмидой) in vivo 1) общая гомологичная рекомбинация, 2) сайт-специфическая рекомбинация и 3) негомологичная рекомбинация. [c.454]

    Понятно, что наряду с механизмами, регулирующими наличие предшественников ДНК (гл. X), клетка должна иметь приспособления, специфически регулирующие скорость и ритм процесса репликации. Некоторый прогресс был достигнут нри изучении этих явлений на бактериальных системах, на фагах и других бактериальных энисомах. (Термин эписома употребляется для обозначения необязательных генетических структур, содержащих ДНК, которые могут существовать в бактериальной клетке или как автономная единица, или как компонент, объединенный с бактериальной хромосомой.) [c.197]

    У вирусов бактерий (бактериофагов) были получены мутации нескольких типов. Мутантный фаг, как правило, отличается от фага дикого тина спектром литического действия (круг возможных хозяев) или морфологией стерильных пятен. Недавно были обнаружены другие мутанты (так называемые условно летальные)-, отбор этих мутантов основан на их чувствительности к повышенной температуре (такие ts-мутанты способны расти, скажем, при 30, но не при 40°) или на их способности размножаться в клетках какого-то одного определенного типа и неспособности размножаться на близкородственных бактериальных штаммах. Мутанты этой последней группы называются ашЬег-мутантами или просто ат-мутантами. Было показано, что у фагов Т2 и Т4 как мутации ат, так и мутации ts локализованы в различных участках хромосомы. Известно, что эти участки контролируют синтез не только обычных фаговых белков, но и других белков, которые вырабатываются зараженной бактериальной клеткой и необходимы для синтеза компонентов фага, в особенности его ДНК. Анализ всех этих мутантов позволил построить детальные генетические карты для нескольких вирусов бактерий. [c.487]

    Внутри клетки обычно имеется ядро, окруженное цитоплазмой. В хромосомах ядра сосредоточена больщая часть клеточной ДНК. В цитоплазме расположены различные органеллы клетки, каждая из которых несет определенную функцию. В относительно крупных органеллах — митохондриях — происходит накопление химической энергии за счет процесса окислительного фосфорилирования, в результате которого образуется богатый энергией аденозинтрифосфат (АТФ). В животных клетках имеется так называемый эндоплазматический ретикулум — особая линопротеидная мембранная структура, к которой прикрепляются очень маленькие рибонуклеопротеидные частицы. Эти частицы, которые в бактериальных клетках находятся в свободном состоянии или прикреплены к клеточной стенке, участвуют в синтезе белка. Их называют рибосомами. [c.368]

    Таким образом, существуют убедительные генетические данные, что клетки этого вида, так же как у Salmonella, содержат в гаплофазе только одну хромосому. К сожалению, это еще не достаточно четко подтверждено цитологическими исследованиями. Хромосомы бактерий очень малы, и у них, по-видимому, отсутствует такой механизм деления, как митоз, характерный для высших организмов. Чисто генетические данные заслуживают, однако, доверия, и мы можем осмелиться утверждать, что обыкновенно в ядре бактерии имеется только одна хромосома. Вместе с тем бактериальная клетка нередко содержит не одно, а несколько ядер. [c.241]

    Сенсационные опыты по трансформации у некоторых бактерий (см. стр. 244) показали, что если бактерии одного штамма поглощают молекулу чистой нуклеиновой кислоты (ДНК) другого штамма, то это приводит к появлению наследственных изменений. Другое доказательство того, что ДНК представляет собой основное вещество, передающее наследственную информацию, было получено при изучении наследственной конституции бактериофагов. Когда бактериофаг поражает бактерию (см. стр. 249), то он вводит в бактериальную клетку вещество, побуждающее ее продуцировать новые вирусные частицы точно такого же состава, как и данный фаг это вещество содержит 977о ДНК и только 3% белка. У лизогенных бактерий профаги, расположенные в разных местах бактериальной хромосомы, как мы уже знаем, представлены одной лишь ДНК. Эта ДНК способна, следовательно, передавать генетическую информацию , которая необходима для того, чтобы возник фаг специфического типа, после чего бактериальная клетка растворяется. [c.269]


Смотреть страницы где упоминается термин Хромосомы бактериальной клетки: [c.453]    [c.165]    [c.257]    [c.258]    [c.259]    [c.165]    [c.144]    [c.104]    [c.167]    [c.114]    [c.195]    [c.193]    [c.487]    [c.255]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.10 , c.15 , c.67 , c.104 , c.109 , c.115 ]

Молекулярная биология (1990) -- [ c.10 , c.15 , c.67 , c.104 , c.105 , c.106 , c.107 , c.108 , c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте