Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутации изучение свойств мутантов

    В 1914 г. В. Генри обнаружил среди выживших после облучения ультрафиолетовым светом бактерий большое количество, как он считал, наследственных вариантов, отличающихся от нормального типа по таким свойствам, как морфология колоний и патогенность. Из этого наблюдения Генри заключил (за 13 лет до того, как Мёллер доказал мутагенное действие рентгеновских лучей на плодовую мушку), что ультрафиолетовые лучи мутагенны для бактерий. Однако доказательство этого утверждения пришло лишь много лет спустя с расцветом в сороковых годах генетики бактерий, когда Демерец показал, что среди 10 клеток Е. соИ штамма Топ (чувствительного к фагу Т1), выживших после облучения определенной дозой ультрафиолетовых лучей, доля мутантов Топ более чем в тысячу раз превышает спонтанный уровень этих мутантов среди необлученных бактерий. Вскоре ультрафиолет стал одним из наиболее широко распространенных мутагенов, используемых для получения мутантов бактерий. Многие мутанты, которые упоминались в предыдущих главах, были отобраны среди клеток, выживших после облучения ультрафиолетом немутантного родительского штамма. Так, например, были получены использованные в опытах по конъюгации (гл. X) Hir- и Р -штам-мы Жакоба и Вольмана с множественными мутациями, а также мутанты Тгр Яновского, использованные для изучения тонкой генетической структуры генов trp (гл. XIV). Однако, хотя молекулярный механизм спонтанных мутаций, а также мутаций, индуцированных аналогами оснований и акридиновыми красителями, к 1960 г. был достаточно хорошо изучен (см. гл. XIII), выяснение механизма мутаций, вызванных ультрафиолетом — исторически первым и долгое время наиболее широко распространенным бактериальным мутагеном, — задержалось до тех пор, пока не был выяснен механизм репараций. [c.381]


    Всякое живое существо по большинству своих признаков сходно со своими предками. Сохранение специфических свойств, т.е. постоянство признаков в ряду поколений, называют наследственностью. Изучением передачи признаков и закономерностей и Г наследования занимается генетика. Каждому признаку в качестве носителя информации соответствует определенный ген. Еще во времена классической генетики исследователи пришли к выводу, что гены находятся в клеточном ядре. Тогда же было уС ан6цлено, что они должны располагаться в линейном порядке. Долгое время считали, что наследственная информация связана с белковыми компонентами нуклеоплазмы. Лишь после успешных экспериментов по передаче наследственных признаков с помощью ДНК. (см. разд. 15.3.4) генетики пришли к убеждению, что именно ДНК, входящая в состав хромосом у всех организмов, служит материальным носителем наследственной информации, Сначала на насекомых, а затем на микроорганизмах было показано, что проявление признаков зависит от активности ферментов. У микроорганизмов ферменты можно было связать с конкретными признаками, поддающимися точному биохимическому определению. Гипотеза один ген-один фермент гласит, что определенный ген содержит информацию, необходимую для синтеза определенного фермента (позднее была принята более точная формулировка каждый структурный ген кодирует определенную полипептидную цепь). Изменение гена вследствие мутации приводит либо к утрате фермента, либо к изменению его свойств, а тем самым и к изменению признака. Гены выявляются только благодаря мутациям. Генетический анализ основан прежде всего на изучении различий в признаках, определяемых альтернативными формами (аллелями) того или иного гена. Поэтому исследование различных генетических проблем ведется на мутантах. [c.434]

    Оценка вирулентпости мутантов свидетельствует о сложности этого свойства и тонкой подгонке обменных процессов паразита к таковым у хозяина. Абсолютное большинство изменений в организме паразита, происходящих в результате различных мутаций, приводит к неспособности вызывать заболевание растения-хозяина. Аналогичная ситуация должна возникать и при изменениях в организме растения-хозяина, что может обусловить успешное применение индуцированного мутагенеза в получении устойчивых к вилту форм хлопчатника. Для выделения у патогена мутантов но вирулентности, способных поражать более широкий или иной круг сортов растения-хозяина, необходимо, по-видимому, изучение прежде всего форм, слабоотличающихся от дикого типа по другим признакам. [c.337]


    Мутации в организмах могут часто приводить к изменения в строении определенных белков, не влияющим на активный центр молекулы. Напомним мутантные формы гемоглобина у человека, отличающиеся от нормального гемоглобина 1—2 замещениями аминокислот в цепях. При этом многие важные свойства мутантных гемоглобинов могут сильно изменяться по сравнению с нормальным (например, растворимость, электрохимические свойства), но константа связывания молекулярногб кислорода гемоглобином при этом остается точно такой же, как у нормального гемоглобина. У изученных бактериальных ферментов известно множество мутантных форм, отличающихся, как правило, заменой одпого аминокислотного звена в цепи. Многие из белков-мутантов не отличаются по ферментативной активности от белка дикого типа. С другой стороны, наблюдаются и такие мутанты, которые вовсе лишен активности, и такие, у которых каталитические свойства существенно изменены. [c.153]

    Предположение об участии в репарации и в рекомбинации одних и тех же ферментов впервые получило экспериментальное подтверждение, когда в 1965 г. А. Кларк открыл Кес -мутанты Е. соН, неспособные к генетической рекомбинации ни при конъюгации, ни при трансдукции.Можно проследить, что этот дефект обусловлен мутациями в нескольких генах гес, один из которых, re k, расположен между 50-й и 55-й минутами генетической карты Е. oli (фиг. 123). У этих мутантов Re " нормально протекает конъюгация (или адсорбция трансдуцирующего фага) не нарушено у них и проникновение в клетку донорной ДНК- Однако поступившая в клетку ДНК у этих мутантов не включается в геном реципиента, если только в реципиентную клетку не попал также и аллель Re " донорного гена гес. Таким образом, гены гес, по-видимому, контролируют образование ферментов, необходимых для процесса рекомбинации. Кроме своей неспособности к генетической рекомбинации, мутанты Re " отличаются еще одним удивительным свойством они обладают ненормально высокой чувствительностью к ультрафиолетовому облучению и напоминают в этом отношении мутантов по гену uvr. Изучение метаболизма ДНК у мутантов по гену гес после облучения ультрафиолетом показывает, однако, что в отличие от мутантов по гену uvr они способны иссекать и репарировать индуцированные ультрафиолетом тиминовые димеры. [c.379]

    В модели структуры ДНК Уотсона и Крика предполагается, что замена одной нуклеотидной пары в нормальной нуклеотидной последовательности гена может привести к формированию мутантного фенотипа. Можно предположить, что мутация, в основе которой лежит замена одной нуклеотидной пары, должна обладать следующими свойствами 1) обратные мутации, переводящие мутантный фенотип в нормальный, должны происходить примерно с той же частотой, что и прямые 2) ей должна соответствовать определенная точка на генетической карте 3) такая мутация должна обладать способностью к рекомбинации с любыми другими точечными мутациями, за исключением тех, которые представляют собой независимые замены той же нуклеотидной пары. Некоторые из изученных Бензером г//-мутантов обладали перечисленными свойствами, другие-нет. Данные, представленные в табл. 6.2, показывают, что частота обратных мутаций к дикому типу у различных гП-мутантов, способных к рекомбинации друг с другом, сильно различается. Некоторые из г//-мутантов вполне стабильны и не ревертируют к дикому типу (т.е. не дают бляшек на Е. соН К (А.)) другие ревертируют к дикому типу с измеримыми и характерными частотами. Генетическая карта г//-мутантов, представленных в табл. 6.2, изображена на рис. 6.3. [c.163]

    Подобные соображения привели нас к следующему выводу. Изучение общей проблемы генетического контроля биохимических реакций, определяющих развитие и метаболизм, должно проводиться с помощью процедуры, противоположной общепринятой вместо того чтобы пытаться выяснить химические основы известных наследственных признаков, необходимо установить, обеспечивают ли гены контроль известных биохимических реакций и как они это делают. Нейроспора, относящаяся к аскомицетам, обладает свойствами, позволяющими реализовать такой подход и одновременно служит удобным объектом для генетических исследований. Вот почему наша программа была построена на использовании именно этого организма. Мы исходили из того, что облучение рентгеном вызывает мутации в генах, контролирующих определенные химические реакции. Пусть для выживания в данной среде организм должен осуществлять какую-то химическую реакцию, тогда мутант, лишенный такой способности, в этих условиях окажется нежизнеспособным. Однако его можно поддерживать и изучать, если выращивать в среде, к которой добавлен жизненно необходимый продукт генетически блокированной реакции . [c.8]


Смотреть страницы где упоминается термин Мутации изучение свойств мутантов: [c.187]    [c.111]    [c.187]    [c.245]    [c.298]    [c.199]   
Методы общей бактериологии Т.3 (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Мутации свойства



© 2024 chem21.info Реклама на сайте