Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты, утилизирующие кислород

    Каждый механизм энергообразования имеет определенные резервы, которые раскрываются или развиваются в процессе адаптации к специфической физической тренировке. Аэробная производительность спортсменов, специализирующихся в видах спорта на выносливость, зависит от адаптационных изменений мощности и емкости аэробного механизма энергообеспечения мышечной деятельности. Емкость аэробного механизма, которая в значительной степени определяется запасами гликогена в скелетных мышцах и печени, а также уровнем утилизации О2 мышцами, существенно повышается уже в течение 1,5—2 месяцев тренировки на выносливость (рис. 132). Мощность аэробного механизма, которая зависит от МПК и активности окислительных ферментов, также увеличивается в процессе адаптации к мышечной деятельности через 2—3 месяца тренировки. Значительно повышается активность окислительных ферментов (табл. 24). Более медленно происходит увеличение емкости капилляров и доставка кислорода в мышцы. Увеличивается количество гемоглобина в крови и миоглобина в мышцах, количество, величина и плотность митохондрий, что повышает способность мышц утилизировать кислород и осуществлять аэробный ресинтез АТФ. В таких условиях повышается способность тренированных мышц окислять пировиноградную кислоту, что предотвращает накопление молочной кислоты, а также усиливает окисление жиров. Это обеспечивает более эффективное выполнение длительной работы. [c.323]


    Уровень потребления О2 в устойчивом состоянии зависит от мощности выполняемого упражнения (рис. 143). При интенсивной работе мощностью более 200 Вт (ЧСС 150—180 уд мин ) устойчивое состояние не устанавливается и потребление О2 может возрастать до конца работы либо до достижения максимально возможного уровня. В последнем случае может наблюдаться "ложное устойчивое состояние", когда потребление О2 некоторое время (6—10 мин) поддерживается на максимальном уровне не потому, что потребность организма в кислороде полностью удовлетворяется, а потому, что исчерпаны возможности сердечно-сосудистой системы доставлять его к тканям. Эта система существенно ограничивает доставку О2 к мышцам. Однако основным лимитирующим фактором на уровне мышечных волокон является способность митохондрий утилизировать кислород и способность окислительных ферментов использовать его в работающих мышцах. Максимальный уровень потребления О2 не может поддерживаться долго во время длительной работы он снижается из-за утомления. [c.336]

    Орг. в-ва с помощью белка-переносчика попадают внутрь клеток микроорганизмов, где происходит окисление примесей, сопровождаемое выделением энергии и синтезом новых в-в с затратой энергии. Роль катализаторов превращений орг. примесей выполняют ферменты. Для разрушения сложной смеси орг. в-в необходимо 80-100 разл. ферментов. Микроорганизмы потребляют только растворенный в стоках кислород насыщение им воды осуществляют аэрацией. При очистке образуется избыток активного ила, к-рый утилизируют (см. ниже). [c.435]

    Образующийся в процессе диспропорционирования анион-радикала кислорода пероксид водорода (реакция 1,21) может утилизироваться с помощью двух ферментов каталазы (КФ 1,11.1,6) и глутатионпероксидазы (КФ 1.11.1.9). [c.39]

    Действие многих описанных в лтературе ферментных электродов основано на ферментах, которые утилизируют кислород. Эти электроды должны снабжаться достаточным количеством кислорода, чтобы он не лимитировал протекание реакции, если только пе используются другие переносчики электронов. Ферментные электроды разрабатывают главным образом для рабод ы в динамическом режиме, в котором в качестве меры концентрации определяемого вещества используют начальную скорость изменения сигнала после помещения электрода в пробу. В этом режиме работы электрода ограничения, связанные с кислородом, можно устранить, насыщая пробу кислородом до ее введения в измерительную ячейку. В работе [6] предложена ферменгная мембрана с высокой растворимостью кислорода в ней. Такую мембрану можно насыщать кислородом до экспозиции электрода в пробе, а затем вводить в измерительную систему пробы, не содержащие кислород. [c.282]


    Чрезвычайно интересные данные были получены также при изучении процесса этерификации терпеновых алкоголей в организме пахучих растений (мяты, артемизии и пр.). Оказалось, что процесс этот в живом растении протекает несравненно интенсивнее (с большей скоростью), нежели вне организма при той же температуре. Очевидно, в растении имеется особый стимул, благоприятствующий этерификации, какой-то каталитический агент, по всей вероятности, принадлежащий к разряду энзимов. Если это действительно фермент, приближающийся по своему характеру к липазам, недавно открытым Ганрио [3], то нет ничего невероятного в предположении, что он проявляет синтетическую деятельность , наподобие мальтазы, для которой обратимый характер гидролиза доказан блестящими исследованиями Крофта Гилля и Эммерлинга [5]. Интересно отметить еще, что, по опытам Шарабо, этерификация в растительном организме находится в какой-то до сих пор еще не выясненной связи с функцией хлорофилла. Можно думать, что в хлорофильном зерне происходит самое образование фермента. С другой стороны, процесс этерификации идет параллельно интенсивности потери воды растением. При наличности только что приведенных фактов естественно является сомнение в том, чтобы терпеновые соединения действительно были только негодными отбросами, пассивными продуктами обмена веществ. Можно думать (если я не ошибаюсь, такое предположение и было высказано применительно к некоторым случаям), что известные эфирные масла в растительном организме играют роль защитительного приспособления, между тем как другие служат средством для. привлечения насекомых. А может быть, в некоторых случаях им принадлежит и более существенная роль в биохимических процессах, происходящих в живой протоплазме. Так, например, естественно приходит в голову мысль, не утилизирует ли каким-либо образом растительный организм замечательной способности, присущей многим терпенам и их дериватам, самоокисляться на воздухе и, вероятно, через посредство промежуточных соединений, имеющих, по Энглеру, характер перекисей, переводит кислород в активное состояние. [c.19]


Смотреть страницы где упоминается термин Ферменты, утилизирующие кислород: [c.237]    [c.69]    [c.104]   
Биосенсоры основы и приложения (1991) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород ферменты



© 2025 chem21.info Реклама на сайте