Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Направление протекания реакции

    Учет знака потенциала окислительно-восстановительной реакции ( > О, < О, = 0) позволяет определять направление протекания реакции в заданных условиях. [c.159]

    Направленность протекания реакций при разных [c.80]

    Изменение энергии Гиббса, таким образом, характеризует направление протекания реакций. Если AG<0, то реакция может протекать самопроизвольно. При AG>0 процесс самопроизвольно протекать не может. Если AG=0, то система находится в равновесии. Чем большим уменьшением энергии Г иббса сопровождается реакция, тем больше сродство реагирующих веществ друг к другу. Изменение энергии Гиббса можно, следовательно, рассматривать как меру химического сродства, которое велико при АЯ< 0 и TAS O. [c.46]


    Оба уравнения описывают реакцию получения аммиака, однако численные значения теплоты реакции и константы равновесия реакции по уравнению (165) отличаются от соответствующих значений уравнения (166). Пока еще не известно, являются ли вещества, стоящие в левой части уравнения, исходными веществами, а с правой — продуктами реакции. Задача термодинамического исследования как раз состоит в том, чтобы определить направление протекания реакции. При записи уравнений реакции можно использовать и дробные коэффициенты [уравнение (166)]. Однако, вообще говоря, в качестве коэффициентов всегда стремятся использовать минимальные целые числа, и уравнение реакции записывают таким образом, чтобы оно соответствовало самопроизвольному протеканию реакции слева направо. [c.206]

    Если окислительный потенциал реакции отрицателен, более благоприятным направлением протекания реакции является переход в восстановленное состояние, а не в окисленное. Например, реакция [c.431]

    При определении численной величины АЯ, необходимо учитывать форму записи стехиометрического уравнения, направление, протекания реакции, температуру, давление и физическое состояние реагентов. [c.22]

    Запишите электрохимическую схему этого элемента, определите его стандартную ЭДС и укажите направление протекания реакции при его работе. Укажите составы катода и анода этого элемента. [c.190]

    Существуют два основных подхода -к изучению химической реакции 1) термодинамический, с помощью которого определяют возможность и направление протекания реакции и 2) кинетический,— рассматривающий механизм реакции и ее скорость. Рассмотрим обобщенное уравнение химической реакции [c.147]

    Энергетическая возможность и направление протекания реакций. [c.224]

    В случае окислительно-восстановительных реакций направление протекания реакции определяется самопроизвольным пере- [c.345]

    Максимальная работа изотермической реакции при постоянном давлении и постоянной температуре определяется изменением так называемого изобарного потенциала ДС. Эта величина характеризует максимальную полезную работу реакции и указывает на направление протекания реакции. [c.193]

    Объяснить направление протекания реакции, используемой для иодометрического определения меди. [c.89]

    Полученное значение ДЯ°(298) положительно, но мало по абсолютной величине. Поэтому оно не может служить критерием направления протекания реакции даже при невысоких температурах, тем более, что в рассматриваемом случае в результате реакции изменяется число молекул газов. [c.185]

    Расчеты химических равновесий имеют большое значение, так как экспериментальное определение константы равновесия может быть сопряжено с большими трудностями (высокие температуры или давления, медленные реакции, нарушение равновесия процессом измерения и др.)- Практическое значение таких расчетов связано с нахождением направления протекания реакций, выхода продуктов и соответст-вуюш,их энергетических эффектов. [c.132]


    Изучение процесса протекания химических реакций. По мере проникновения структурного анализа в повседневную жизнь химических лабораторий и увеличения пропускной способности структурных центров эта задача постепенно выходит на передний план. Какие преобразования происходят в многостадийном процессе химического реагирования — один из самых актуальных и сложных вопросов многих реакций. Структурное изучение исходных веществ, промежуточных и конечных продуктов, возникающих в разных термодинамических условиях, позволяет уяснить многие (хотя, конечно, не все) стороны процесса. При этом следует иметь в виду, что чисто стерические эффекты, пространственные возможности или, наоборот, затруднения являются немаловажными факторами в определении направления протекания реакций. Особенно существенно в этом аспекте структурное изучение продуктов, возникающих на разных стадиях каталитических реакций. [c.176]

    Условия равновесия позволяют предсказать направление протекания реакции. Заданное начальное состояние системы можно выразить в форме закона действующих масс отношением Q . Условие /Сс будет определять имеющуюся возможность протекания реакции, т. е. в каждом случае исходные концентрации будут изменяться так, что в конце концов установится состояние равновесия Q = Кс- Подобная оценка смещения равновесия имеет значение для качественных выводов, естественно, при условии, что соответствующие реакции обратимы и протекают достаточно быстро. [c.44]

    Направление протекания реакций [c.167]

    Указать для каждой реакции окислитель и восстановитель и установить направление протекания реакции. Какая реакция будет протекать наиболее интенсивно (судя по величинам э.д.с. цепей)  [c.158]

    Следует, однако, отметить, что делать априорГный расчет состава продуктов алкилирования на основе только стабильности карбокатионов нельзя, так как важную роль имеют и кинетические факторы, которые вносят значительные коррективы в направленность протекания реакции. Например, в соответствии с термодинамическими данными, пропилхлорид должен преимущественно превращаться в более стабильный изопропил-катион, который при атаке бензола должен давать изопропилбензол. Образование значительных количеств пропилбензола при алкилировании бензола этим агентом в присутствии А1С1з можно объяснить тем, что пер ичный алкил-катион в силу своей высокой реакционной способности присоединяется к ароматическому ядру раньше, чем произойдет его перегруппировка. [c.109]

    Направление протекания реакции зависит от строения дикарбоно вой КИС ОТЫ. [c.369]

    Итак, действительно, знание знака потенциала реакции позволяет сделать вывод о направлении протекания реакции в данных условиях. Рассмотрим некоторые примеры. [c.160]

    В данном случае для определения направления протекания реакции необходимо рассчитать ее стандартный потенциал, поскольку все реагенты находятся в стандартных состояниях. Согласно изложенному выше Е° = Е°-Е° = 1,77-0,77 = 1,00 В > 0. Следовательно, в заданных условиях реакция протекает в прямом направлении в соответствии с записью уравнения реакции ионы Ре " окисляются ионами Се ". [c.160]

    Направление протекания реакции [c.27]

    Данный пример показывает, что, применяя неводный растворитель, можно изменить направление протекания реакции обмена. Это обусловлено различной растворимостью солей в воде и пиридине. [c.103]

    Напротив, перегруппировка по типу 15]у2-замещепия способствует стереохимически направленному протеканию реакции. При ]у2-реакциях мигрирующая группа атакует неискаженный, тетраэдрический заряженный атом углерода. Такой атаке более доступна сторона, противоположная элиминированному заместителю (в рассматриваемых случаях это гидрид-ион). Следствием определенной ориентации реакционных центров является фиксированное положение входящего (мигрирующего) заместителя, а отсюда — высокая степень стереоспецифичности замещения. В этом случае уже невозможно существование двух, разделенных Энергетическим барьером ионов, как это имеет место в реакциях типа а существует лишь один неклассический ион , про- [c.162]

    В первом случае стадия каждого цикла входит в один простой цикл. В числителе для скорости стадии в формуле (11.14) будет фигурировать только одна циклическая характеристика С, соответствующая этому циклу. Наличие дополнительного цикла сказывается лишь на величине параметра сопряжения Р. Скорость по циклу может изменяться лишь количественно, но ни в коем случае не меняется направление протекания реакции. Такая ситуация соответствует так называемому кинетическому сопряжению (см., напр., [40]). Общее число каркасов в предположении, что все стадии обратимы, составляет где rii, Пг — числа стадий в обоих циклах. [c.97]

    С помощью новых высокоэффективных методов — ЯМР, ЭПР, ИКС, меченых атомов и др.— от изучения вопросов о направленности протекания реакции электрофильного замещения исследователи смогли перейти на более углубленную разработк задач, связанных с установлением причин, обусловливающих эти превращения. Количественная оценка различных характеристик реакций электрофильного замещения в ароматическом ряду связана с реакционной способностью атакующих групп и электронной структурой ароматических компонентов. Известно, что энтальпия образования ДЯ°ст ионов карбонияв значительной степени характеризует их стабильность и реакционную способность (табл. 4.1). [c.86]

    Если константа равновесия имеет значения от Ю до 10 , направление протекания реакции может быть изменено увеличениеи коицеитрации исходных реагентов или продуктов реакции. [c.68]


    Кислород в асфальтенах находится в четырех основных функциональных группах гидроксильной, карбонильной, карбоксильной и сложноэфирной. При термодеструктивных процессах кислород способен перераспределяться между этими группами, одновременно выделяясь или поглощаясь из внешней среды, что может существенно повлиять на направление протекания реакций и соотнетст-венно на качество промежуточных и конечных продуктов, получаемых из асфальтенов. Наибольшее количество зольных компонентов (в том числе вачадия и никеля) концентрируется в первой фракции и в остатке асфальтенов. Предполагают, что ванадийпорфириновыс комплексы могут быть составной частью асфальтенов, хотя и не исключается их присутствие как сольватирующего агента. [c.28]

    Теория графов является одной из ветвей топологии и отличается геометрическим подходом к изучению объектов. Основное понятие теории, гра0 —система линий, соединяющих заданные точки. В дорожном деле —это дороги, соединяющие населенные пункты, в электротехнике — проводники, соединяющие различные детали схемы в химической кинетике при изображении кинетических схем реакций точками могут быть предста(влены химические соединения (исходные или промежуточные), а линиями — стрелки, указывающие направление протекания реакции. В общем случае линии графа могут быть прямыми, кривыми или извилистыми в зависимости от конкретной задачи. [c.285]

    Вычислить химическое сродство веществ, вступающих в реакцию по уравнению М2+ЗН2 2МНз, при 450° С определить направление протекания реакции, если константа равновесия [c.132]

    В формировании природных полимеров принимают участие соответствуюш,ие ферменты и катализаторы, которые обеспечивают направленное протекание реакций. В начальный период развития химии синтетических полимеров, когда еще не были най-дены совершенные катализаторы синтеза, получали полимеры с нерегулярной структурой, малой молекулярной массой и вследствие этого с низкими физико-механическими показателями. По мере развития этой отрасли химической науки и производства были разработаны способы получения пространственно и химически регулярных полимеров (стереоспецифическая полимеризация) из промышленнодоступных мономеров (этилен, пропилен, стирол и др.), что привело к громадному росту производства различных полимеров. Большинство этих полимеров в природе не существует, [c.13]

    Понятие о химической кинетике. Скорость химических реакций. Термодинамический подход к описанию химических процессов позволяет оценить энергию взаимодействия и наиболее вероятные направления протекания реакций. При этом нет необходимости прибегать к конкретному рассмотрению механизма процесса, к экспериментальному его осуществлению. Однако классическая термодинамика рассматривает только равновесные системы и равновесные процессы, т. е. процессы, которые протекают бесконечно медленно. С термодинамических позиций невозможно анализировать развитие процесса во времени, поскольку время (как переменная) не учитывается при термодинамическом описании. Поэтому вторым этапом в изучении закономерностей протекания химических процессов является рассмотрение их развития во времени, что представляет собой основную задачу химической кинетики. В реальных уело-ВИЯХ протекание химических реакций связано с преодолением энергетических барьеров, которые иногда могут быть весьма значи тельными. Именно поэтому термодинамическая возможность осуществления данной реакции (AG<0) является необходимым, но недостаточным условием реализации процесса в действительности. Хи мическая кинетика кроме выяснения особенностей развития процесса во времени (формально-кинетическое описание) изучает [c.212]

    НАУЧНАЯ НОВИЗНА. При ароматизации парафинов С3-С7 использованы опытно-промышленные партии катализаторов облагораживания прямогонных бензинов (процессы Цеоформинг, Цеокат) после модифицирования цинком. Изученные закономерности ароматизации газообразных и жидких парафинов на этих катализаторах свидетельствуют о двух конкурирующих направлениях протекания реакции прямой и деструктивной ароматизации. Выявлено, что при температурах 450 - 580 °С, мольном соотношении бутана к бензолу 3,15 1 скорости ароматизации бутана и алкилирования бензола продуктами крекинга сопоставимы, [c.4]


Смотреть страницы где упоминается термин Направление протекания реакции: [c.128]    [c.70]    [c.93]    [c.187]    [c.72]    [c.220]    [c.33]    [c.173]    [c.161]    [c.161]    [c.50]   
Смотреть главы в:

Теоретические основы аналитической химии 1987 -> Направление протекания реакции


Теоретические основы аналитической химии 1987 (1987) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние различных факторов на значения окислительновосстановительных потенциалов и направление протекания окислительно-восстановительных реакций

Внутренняя энергия . 6.1.2. Энтальпия . 6.1.3. Превращения энергии при химических реакциях. Термохимия . 6.1.4. Энергетические эффекты при фазовых переходах . 6.1.5. Термохимические расчеты . 6.1.6. Факторы, определяющие направление протекания химических реакций

Направление и глубина протекания окислительно-восстановительных реакций

Направление и условия протекания необратимых реакций

Направление протекания обменных реакций

Направление протекания окислительно-восстановительной реакции

Потенциал реакции (электродвижущая сила реакции) Направление протекания окислительно-восстановительной реакции

Реакции направление

Уравнение Нернста, направление протекания окислительно-восстановительных реакций в растворах и константы их равновесия

Условия протекания и направление химической реакции

Факторы, определяющие направление протекания химических реакции



© 2025 chem21.info Реклама на сайте