Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал действия скелетных мышечных

    Следует отметить, что не во всех мышечных клетках организма процесс сопряжения происходит, как в кардиомиоците. Так, в скелетных мышцах теплокровных потенциал действия короткий (2-3 мс) и медленный поток ионов кальция в них отсутствует. В этих клетках сильно развита Т-система поперечных трубочек, подходящих непосредственно к саркомерам близко к /-дискам (см. рис. 7.11). Изменения мембранного потенциала во время деполяризации через Т-систему передается в таких клетках непосредственно на мембрану СР, вызывая залповое высвобождение ионов Са + и дальнейшую активацию сокращения (3, 4, 5). [c.161]


    Нейромоторные функциональные единицы подразделяются на две основные группы — фазные и тонические нейромоторные единицы. Мышечные волокна фазных единиц — так называемые фазные мышечные волокна — имеют одиночную иннервацию и мембрану, способную к распространению потенциала действия (и волны сокращения) вдоль волокна. Работа фазных единиц представляет собой чередование фаз — волна сокращения быстро сменяется фазой расслабления. К этому типу относится большинство волокон скелетных (поперечно-полосатых) мышц. В мышечных волокнах тонических нейромоторных единиц — так называемых тонических мышечных волокнах, мембрана которых неспособна к проведению потенциала,— по всей длине волокна разбросаны десятки нервно-мышечных окончаний (множественная иннервация). Сокращение этих волокон начинается лишь после целого ряда нервных импульсов, идущих с таким интервалом, чтобы обеспечить суммирование локального потенциала и достаточное его возрастание. Сокращение такого типа, медленно развивающееся, слитное, которое мышца способна поддерживать длительно, без видимого утомления, носит название тонического сокращения. Нейромоторные единицы тонического типа обычно участвуют в поддержании мышечного тонуса. Существуют и нейромоторные единицы переходного типа, мышечные волокна которых способны в зависимости от частоты приходящих импульсов сокращаться либо по фазному, либо по тоническому типу. [c.228]

    Скелетные мышцы, как и миокард, относятся к типу поперечнополосатых и состоят нз волокон (клеток), на которых оканчиваются разветвления соответствующего нерва, управляющего состоянием мышцы. В каждой двигательной единице, т.е. совокупности мьппечных волокон и иннервирующих нх разветвлений аксона определенного двигательного нейрона, мышечные волокна сокращаются почти одновременно под влиянием приходящих по аксону импульсов возбуждения. Механизм генерации и распространения импульса электрического возбуждения в мышечном волокне очень близок к механизму электрического возбуждения нерва (особенно это относится к так называемым быстрым мышечным волокнам). В частности, каждый импульс начинается с локальной деполя 1зации клеточной мембраны, в результате которой развивается потенциал действия. При зтом возникают клеточные генераторы и соответствующее электромагнитное поле в окружающем мышцу пространстве. Плавное сокращение мышцы фактичес- [c.139]

    Метаболизм скелетных мышц специализирован на выработке АТР, необходимого для их сокращения и расслабления. При интенсивной мышечной нагрузке основным топливом служит гликоген, который превращается в лактат. В период отдыха лактат превращается снова в гликоген печени и глюкозу. Мозг использует в качестве топлива только глюкозу и р-гидроксибутират, причем последний играет важную роль при голодании. Большая часть энергии АТР в мозгу расходуется на активный транспорт ионов Na и К и на поддержание потенциала действия мембран нервных клеток. [c.775]


    В сердечных волокнах различного типа потенциал действия обусловлен различными изменениями ионной проводимости в связи с этим для каждого волокна характерна особая форма потенциала действия. Основные ионные механизмы генерации потенциала действия в сердечных волокнах такие же, как и в клетках скелетных мышц или нейронов сначала происходит поглощение ионов Са + и Ма+, а затем выведение К+. Однако для клеток водителей ритма характерны также медленные изменения проницаемости, обеспечивающие медленную деполяризацию и реполяризацию. Волокнам Пуркинье и мышечным клеткам миокарда свойственна фаза длительной деполяризации, или плато. Эта фаза обусловлена непрерывным медленным входом Са +, уравновешивающим выход К" ", на фоне инактивации быстрых натриевых каналов. Во время фазы плато волокно находится в состоянии рефрактерности, что препятствует чрезмерному возбуждению и слишком частому поступлению импульсов по проводящей системе. Все эти ионные механизмы показаны на рис. 19.8В (см. также гл. 8). [c.43]

    Потенциал действия мышечной клетки сердца отличается от потенциала действия нервного волокна и клетки скелетной мышцы прежде всего длительностью возбуждения - деполяризации (рис. 4.7). [c.105]

    Для передачи нервных сигналов необходимо строго регулируемое распределение ионных каналов в плазматической мембране. При разрушении и образовании синапсов это распределение изменяется. Нормальное иннервированное волокно скелетной мышцы имеет ацетилхолиновые рецепторы только в области нерв-но-мышечного соединения, проводит потенциалы действия при помощи потен-циал-зависимых натриевых каналов и не образует новых синапсов на своей поверхности. После денервации мышечного волокна ацетилхолиновые рецепторы и потенциал-зависимые кальциевые каналы появляются во всей плазматической мембране и вся клеточная поверхность приобретает способность к образованию новых синапсов. Эти изменения контролируются главным образом количеством стимулов, получаемых клеткой. Место установления нервно-мышечного контакта отличается определенной специализацией базальной мембраны, от которой, по-видимому, зависит как распределение ацетилхолиновых рецепторов в мышечной плазматической мембране, так и положение пресинаптического окончания аксона. [c.118]


Смотреть страницы где упоминается термин Потенциал действия скелетных мышечных: [c.130]    [c.163]   
Мышечные ткани (2001) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте