Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал действия проведение

    Нейромоторные функциональные единицы подразделяются на две основные группы — фазные и тонические нейромоторные единицы. Мышечные волокна фазных единиц — так называемые фазные мышечные волокна — имеют одиночную иннервацию и мембрану, способную к распространению потенциала действия (и волны сокращения) вдоль волокна. Работа фазных единиц представляет собой чередование фаз — волна сокращения быстро сменяется фазой расслабления. К этому типу относится большинство волокон скелетных (поперечно-полосатых) мышц. В мышечных волокнах тонических нейромоторных единиц — так называемых тонических мышечных волокнах, мембрана которых неспособна к проведению потенциала,— по всей длине волокна разбросаны десятки нервно-мышечных окончаний (множественная иннервация). Сокращение этих волокон начинается лишь после целого ряда нервных импульсов, идущих с таким интервалом, чтобы обеспечить суммирование локального потенциала и достаточное его возрастание. Сокращение такого типа, медленно развивающееся, слитное, которое мышца способна поддерживать длительно, без видимого утомления, носит название тонического сокращения. Нейромоторные единицы тонического типа обычно участвуют в поддержании мышечного тонуса. Существуют и нейромоторные единицы переходного типа, мышечные волокна которых способны в зависимости от частоты приходящих импульсов сокращаться либо по фазному, либо по тоническому типу. [c.228]


    Распространение потенциала действия (импульса) вдоль нервного волокна определяется кабельными свойствами этого волокна. При локальной деполяризации мембраны и возникновении потенциала действия ток, проходящий через открытые натриевые каналы, пассивно распространяется и деполяризует соседние участки мембраны, где в свою очередь возникает потенциал действия Во многих аксонах позвоночных высокая скорость и эффективность проведения импульсов достигается благодаря изоляции поверхности аксона миелиновой оболочкой, изменяющей кабельные свойства аксона и оставляющей открытыми лишь небольшие участки возбудимой мембраны. [c.304]

    Каков механизм действия медиатора на постсинаптическую мембрану В случае ацетилхолина он состоит в деполяризации мембраны и увеличении проницаемости по отношению к ионам натрия и калия. Собственно, это, по-видимому, те же изменения мембраны, которые обусловлены возникновением потенциала действия (гл. 5, разд. Б, 3) при проведении нервного импульса. Ацетилхолин связывается со специальным рецептором, в результате чего натриевые каналы в мембране каким-то образом открываются. Из электрических органов электрического угря недавно был выделен белок большого молекулярного веса, обладающий, по полученным данным, свойствами рецептора ацетилхолина [45]. Имея мол. вес 330 ООО, этот белок представляет собой, видимо, тример из субъединиц с мол. весом =110 000, в свою очередь состоящих из 2—4 пептидов с мол. весом 34 ООО—54 ООО. Каким образом функционирует этот рецептор, пока неизвестно (гл. 5, разд. В, 5). [c.332]

    Если на каком-нибудь участке мембраны проницаемость для ионов натрия увеличивается, то эти ионы устремляются внутрь клетки, нейтрализуя ее отрицательный заряд. Клеточная мембрана при этом деполяризуется. При деполяризации по поверхности мембраны распространяется затухающий электрический сигнал, аналогично тому как это имеет место при прохождении тока по коаксиальному кабелю Считают, что включение нервного импульса часто связано с локальным увеличением проницаемости мембраны для ионов натрия. В этом процессе могут играть определенную роль также и другие ионы, в частности Са +. Пассивное распространение электрических сигналов, обусловленное локальной деполяризацией мембраны, происходит, однако, только в случае очень коротких нервных клеток на длинные расстояния этим способом сигнал распространяться не может. В большинстве аксонов нервных клеток используется более эффективный способ проведения импульса, основанный на развитии потенциала действия. Потенциал действия — это импульс, проходящий вдоль аксона и специфически изменяющий за доли секунды (в нервах млекопитающих приблизительно за 0,5 мс) мембранный потенциал (рис. 5-6). Исходный отрицательный потенциал - 50—70 мВ быстро падает до нуля, затем достигает положительного значения 40—50 мВ, после чего снова устанавливается потенциал покоя. Поразительная особенность потенциала действия состоит в том, что он распространяется вдоль аксонов со скоростью 1 —100 м/с без снижения интенсивности. [c.370]


    Катодная защита может быть введена как дополнительное мероприятие в любой момент, но нужно учитывать, что экономично ее применение бывает тогда, когда изоляция еще достаточно сохранилась. и имеет незначительную проводимость. Если решение о введении в действие катодной защиты принято и осуществлено, служба по защите от коррозии должна принять катодную установку и получить от ее исполнителей основные параметры защиты принятый минимальный защитный потенциал, регулярность проведения контрольных измерений, места уста- [c.375]

Рис. 17.7. Схема, объясняющая появление разных по протяженности местных цепей в миелинизированном (А) и немиелинизированном (Б) аксонах. В первом случае нервное проведение называют сальтаторным, т. е. скачкообразным, потому что потенциал действия быстро перескакивает между перехватами Ранвье. Рис. 17.7. Схема, объясняющая появление разных по протяженности местных цепей в миелинизированном (А) и <a href="/info/1434908">немиелинизированном</a> (Б) аксонах. В первом случае <a href="/info/976917">нервное проведение</a> называют сальтаторным, т. е. скачкообразным, потому что <a href="/info/101645">потенциал действия</a> быстро перескакивает между перехватами Ранвье.
    Таким образом, потенциал действия можно описать как поток положительно заряженных ионов натрия, проникающих через мембрану внутрь нейрона и движущихся вдоль аксона. Главное преимущество электрического пути проведения импульса состоит в том, что сигнал распространяется на большие расстояния быстро и без затухания. Достигая окончания аксона, волна деполяризации вызывает выброс молекул медиатора из синаптических пузырьков, и механизм передачи нервного импульса опять приобретает тонкую химическую природу. Нейрон быстро восстанавливает электрохимическое равновесие и возвращается к состоянию с отрицательным потенциалом внутри клетки до следующего сигнала. Таким образом, чрезвычайно малая продолжительность синаптического сопряжения между соседними нейронами позволяет передавать через си- [c.460]

    СКОРОСТЬ ПРОВВДЕНИЯ. У позвоночных подавляющая часть нервньгх волокон, особенно в спинномозговых и черепных нервах, окружены миелиновой оболочкой, образованной шван-новскими клетками (рис. 6.30 и разд. 6.6.1). Миелин — это материал белково-липидной природы, обладающий высоким электрическим сопротивлением и действующий как изолятор, подобно резиновому или пластиковому покрытию электрического провода. Суммарное сопротивление мембраны аксона и миелиновой оболочки очень велико, но там, где в миелиновой оболочке имеются разрывы, называемые перехватами Ранвье, сопротивление току между аксоплазмой и внеклеточной жидкостью меньще. Только в этих участках замыкаются местные цепи, и именно здесь через мембрану аксона проходит ток, генерирующий следующий потенциал действия. В результате импульс перескакивает от одного перехвата Ранвье к другому и пробегает по миелинизированному аксону быстрее, чем серия меньших по величине местных токов в немиелинизированном нервном волокне. Такой способ распространения потенциала действия, называемый сальтаторным (от лат. saltare — прыгать), может обеспечивать проведение импульса со скоростью 120 м/с (рис. 17.7). [c.285]

    Последующие эксперимепты показали, что не во всех нейронах продолжительность потенциала действия определяется потенциалзависимыми К -каналами. В частности, в миелинизированных аксонах млекопитающих (разд. 19.2.4) число таких каналов очень невелико и состояние покоя достигается просто в результате инактивации натриевых каналов. Но хотя наличие потенциал-зависимых калиевых каналов несущественно для проведения уже возникших потенциалов действия, позднее мы увидим (разд. 19.4.3), что эти каналы играют решающую роль в механизме первичного генерирования импульсов при раздражении тела нервной клетки. [c.300]

    Изолирующий слой, образуемый миелиновой оболочкой, резко уменьшает емкость мембраны аксона и одновременно почти полностью предотвращает утечку тока через нее. Между двумя соседними сегментами миелина остается узкий незащищенный участок мембраны (рис. 19-14). Эти так называемые перехваты Ранвье шириной всего лишь около 0,5 мкм являются центрами электрической активности. Почти все натриевые каналы аксона сосредоточены в перехватах, где плотность этих каналов достигает нескольких тысяч на 1 мкм, тогда как в участках, прикрытых миелиновой оболочкой, их почти вовсе нет. Поэтому изолированные участки мембраны не способны возбуждаться, но обладают превосходными кабельными свойствами - низкой емкостью и высоким сопротивлением для утечки тока. Поэтом> токи, связанные с потенциалом действия в области перехвата, эффективно направляются путем пассивного проведения к следующем) перехвату, быстро деполяризуют мембрану и возбуждают очередной потенциал действия. Такое проведение называют сальтаторным - сигнал распространяется вдоль аксона, перескакивая с одного перехвата на другой. Миелинизация дает два главных преимущества быстрее распространяется потенциал действия и сберегается метаболическая энергия, так как активное возбуждение происходит лишь на небольших участках в перехватах Ранвье. [c.303]


    Генерацию нервом потенциала действия в ответ на электрическое раздражение обычно называют возбуждением поэтому мы говорим, что нерв обладает возбудимостью. Экспериментаторы прошлого не имели возможности непосредственно зарегистрировать нервный импульс о наличии этого импульса судили по сокращению связанной с нервом мышцы (сокращение следовало за раздражением через короткий промежуток времени, необходимый для проведения потенциала действия по нерву). Поскольку сокращение мышцы было очень коротким, можно было предположить, что в ней также возникает импульс и, следовательно, мышцы обладают возбудимостью. [c.149]

    При изучении механизмов возникновения потенциала действия в нейронах (а также в других клетках) мы будем отталкиваться от нескольких общепризнанных фактов. Прежде всего процессы, приводящие к генерации нервного импульса, разыгрываются на мембране и заключаются в кратковременных изменениях мембранного потенциала. Идеи о том, что потенциал действия возникает именно на мембране, высказывались уже в XIX веке. Они были подтверждены в изящных опытах на гигантских аксонах кальмара проведение импульсов в этих аксонах сохранялось даже после выдавливания из них аксо-плазмы. [c.152]

    Вклад ионов кальция в создание потенциалов действия может иметь важное значение. Во-первых, вход кальция во время потенциала действия представляет собой эффективный механизм повышения внутриклеточной концентрации свободного Са +, а этот ион участвует в работе целого ряда клеточных механизмов. Во-вторых, ионы кальция регулируют проницаемость для других ионов, в частности для К+. В-третьих, Са+ играет важнейшую роль в модуляции проведения в электрических синапсах и в выделении медиаторов в химических синапсах. Подробнее мы рассмотрим эти механизмы как в последующих разделах настоящей главы, так и в главе 8. [c.162]

    Проведение потенциала действия [c.169]

    До недавнего времени полагали, что единственная функция нервного импульса состоит в быстром проведении сигналов по аксонам на большие расстояния. Важная роль этой функции состоит в том, что сила раздражения кодируется в нейронах путем изменения частоты импульсации. Информация, закодированная в нервных импульсах, передается на другие нейроны через синапсы, образуемые нервными окончаниями. Ни в коей мере не умаляя важности этой функции потенциала действия, мы хотели бы подчеркнуть, что возбудимость может влиять и на другие . процессы жизнедеятельности нервных клеток. [c.172]

    Активность протоплазмы, вызванную раздражением, можно обнаружить. В целом для протоплазмы, находящейся в состоянии возбуждения, характерны появление потенциала действия, изменения сопротивляемости, а соответственно и проницаемости, и рефрактерного периода. Конечно, для понимания этих явлений необходимо в первую очередь рассмотреть физиологическое состояние не подвергшейся раздражению части растения. Как показали соответствующие исследования, проведенные с помощью очень чувствительных измерительных приборов, плазмалемма обладает некоторым зарядом. При этом протоплазма, как правило, электрически отрицательна по отношению к поверхности клетки. Этот электрический потенциал покоя (примерно от —50 до —200 мВ) обусловлен неодинаковым распределением ионов между внутренней и внешней средой. В то время как внутри клетки преобладают ионы К и С1 , снаружи больше Са . Поддержание неравномерного распределения ионов требует затрат энергии и осуществляется ионными насосами . Их роль играют прежде всего молекулы — переносчики ионов. Раздражение приводит к выходу из клетки ионов С1 и поступлению в нее ионов Са +, а также [c.16]

    Вновь обсудим электровозбудимые каналы, которые обеспечивают пассивный транспорт ионов Ыа+ и К+. Тщательный анализ возникновения потенциала действия гигантского аксона кальмара, проведенный Ходжкин и Хаксли [1—3], показал, что существуют по крайней мере два различных (отдельных) капала после деполяризации мембраны открывается натриевый канал, обусловливающий входящий поток ионов Ыа+ через некоторое время открывается калиевый канал и поток ионов К+ устремляется в противоположном направлении (рис. 6.1). Известно, что проницаемость мембраны для ионов Ыа+ и К+ не увеличивается одновременно. Кроме того, имеются еще два факта, которые доказывают существование двух отдельных каналов. [c.132]

    В гл. 6 рассматривались натриевые и калиевые каналы, регулирующие пассивный ток ионов во время потенциала действия (рис. 7.1). Однако еще одна функция аксональной мембраны связана с проведением нервных импульсов — активный транспорт ионов. Если бы вход ионов натрия в клетку сопровождался только выходом ионов калия, градиент концентрации между обеими сторонами клетки вскоре исчез. Пассивное проникновение ионов Na+ через мембрану в состоянии покоя приводит к тому же эффекту, поэтому входящие ионы натрия должны вновь выводиться наружу, а диффундирующие снаружи ионы К+ должны направляться внутрь аксона. Естественно, что для этого должна расходоваться энергия, поскольку указанный процесс осуществляется против градиента концентрации. Именно этой цели и служат ионные насосы, содержащиеся в мембране аксона благодаря метаболической энергии, накопленной в АТР, они осуществляют активный транспорт ионов для поддержания мембранного потенциала. Направление движения иона и направления градиентов схематически изображены на рис. 7.2. Ходжкин и Кейнес [1] исследовали активный транспорт ионов Na+ через мембрану нерва. Они показали, что поток радиоактивных ионов Na+ из клетки ингибируется 2,4-динитрофенолом (рис. 7.3, а), который блокирует синтез АТР. В ходе дальнейших экспериментов Ходжкин и Кейнес установили, что транспорт Na+ обеспечивается при участии ферментов (рис. 7.3,6). Охлаждение клетки до 9,8 °С (или до 0,5 °С) явно замедляло выход ионов натрия, хотя известно, что пассивная диффузия Na+ не столь сильно зависит от температуры. [c.167]

    Передача электрических сигналов нервной клеткой основана на изменении мембранного потенциала в результате прохождения относительно небольшого числа ионов через мембранные каналы. Эти ионы перемещаются за счет энергии, большой запас которой создаежя благодаря работе Ыа К -АТРазного насоса, поддерживающего более низкую концентрацию N0 и более высокую концентрацию К внутри клетки по сравнению с наружной средой. В покоящемся нейроне каналы избирательной утечки К делают мембрану более проницаемой для калия, чем для других ионов, и поэтому мембранный потенциал покоя близок к равновесному потенциалу К, составляющему примерно - 70 мВ. Внезапная деполяризация мембраны изменяет ее проницаемость, так как при этом открываются потенциал-зависимые натриевые каналы. Но, если деполяризованное состояние поддерживается, эти каналы вскоре инактивируются. Под влиянием мембранного электрического поля отдельные каналы совершают резкий переход от одной из возможных конформаций к другой. Потенциал действия инициируется тогда, когда под влиянием короткого деполяризующего стимула открывается часть потенциал-зависимых натриевых каналов, что делает мембрану более проницаемой для Ыа и еще дальше смещает мембранный потенциал по направлению к равновесному натриевому потенциалу. В результате такой положительной обратной связи открывается еще больше натриевых каналов, и так продолжается до тех пор, пока не возникнет потенциал действия, подчиняющийся закону всё или ничего . Потенциал действия быстро исчезает вследствие инактивации натриевых каналов, а во многих нейронах также и открытия потенциал-зависимых калиевых каналов. Распространение потенциала действия (импульса) по нервному волокну зависит от кабельных свойств этого волокна. Когда при импульсе мембрана на некотором участке деполяризуется, ток, проходящий здесь через натриевые каналы, деполяризует соседние участки мембраны, где в свою очередь возникают потенциалы действия. Во многих аксонах позвоночных высокая скорость и эффективность проведения импульсов достигается благодаря изоляции поверхности аксона миелиновой оболочкой, оставляющей открытыми лишь небольшие участки возбудимой мембраны. [c.92]

    Описание всех опытов, которые были проведены с целью проверки натриевой теории , заняло бы очень много времени. Но кое-что о них все же следует сказать. Во-первых, было доказано, что нервным волокнам многих типов для проведения импульса необходимо присутствие в тканевой жидкости натрия. Во-вторых, обнаружилось, что величину потенциала действия можно изменять в широких пределах, изменяя концентрацию натрия в окружающей среде, причем количественные соотношения вполне соответствовали тем, которых следовало ожидать на основании теории. В-третьнх, измерения прохождения ионов натрия внутрь волокна за время нескольких импульсов показали, что пх количество достаточно, чтобы вызвать ток действия соответствующей силы. Наконец, в ряде тонких экспериментов Ходжкину и Гекели удалось измерить скорость прохождения ионов натрия через оболочку нервного волокна при строго определенных и различных значениях напряженности электрического поля и концентрации натрия в окружающей среде. Было обнаружено несколько интересных фактов. Когда напряженность электрического поля резко падала от нормальных для состояния покоя значений до нуля, возникал внезапный поток ионов натрия в сторону более низкой их концентрации. В норме они входят в волокно, но если уменьшить наружную их концентрацию так, чтобы она упала ниже их концентрации внутри волокна, то поток ионов натрия направится в обратную сторону Это показывает, что главное изменение, происходящее во время раздражения током, действительно сводится к изменению проницаемости для ионов натрия, причем не в одном, а в обоих направлениях. Другой важный факт состоит в том, что поток ионов натрия движется очень недолго и через 1—2 тысячных доли секунды автоматически выключается , сменяясь усиленным потоком ионов калия. Почему это так происходит, остается тайной, но очевидно, что это имеет [c.251]

    РАСПРОСТРАНЕНИЕ (ПРОВЕДЕНИЕ) НЕРВНЫХ ИМПУЛЬСОВ, Нервный импульс представляет собой волну деполяризации, распространяющуюся по поверхности нейрона. Распространение происходит вследствие самогенерирования потенциалов действия за счет поступающих в аксон ионов натрия. Поступивщие ионы натрия создают зону положительного заряда внутри клетки, что приводит к возникновению локальной электрической цепи, по которой течет местный ток между этой и соседней отрицательно заряженной зоной. Местный ток снижает мембранный потенциал в этой зоне, и в результате деполяризации здесь повыщается проницаемость мембраны для натрия и в свою очередь генерируется потенциал действия. Последовательная деполяризация все новых и новых участков мембраны приводит к тому, что потенциал действия распространяется по аксону [c.284]

    В немиелинизированных аксонах, типичных для беспозвоночных, скорость распространения потенциалов действия зависит от сопротивления аксоплазмы. Это сопротивление в свою очередь зависит от диаметра аксона — чем меньше диаметр, тем больше сопротивление. В тонких аксонах (<0,1 мм) высокое сопротивление аксоплазмы влияет на проведение тока и снижает длину местных цепей, так что в них включаются только те участки, которые расположены непосредственно впереди потенциала действия. В результате скорость распространения импульсов в этих аксонах низка — всего около 0,5 м/с. Диаметр гигантских аксонов, свойственных многим кольчатым червям, членистоногим и моллюскам, равен примерно 1 мм, а скорость проведения по ним импульсов достигает 100 м/с. Этого вполне достаточно для передачи жизненно важной информации. [c.285]

    Поступлению в дендрит ионов натрия через постсинаптическую мембрану вызывает ее деполяризацию (рис. 17.4, А). Если при этом достигается порог возбуждения, в нейроне генерируется потенциал действия, и нервный импульс распространяется дальше. Изменив проницаемость постсинаптической мембраны, ацетилхолин практически мгновенно удаляется из синаптической щели под действием фермента ацетилхолинэстеразы, иногда называемого просто холинэ-стеразой. Этот фермент локализован на постсинаптической мембране и гидролизует ацетилхолин до холина и остатка уксусной кислоты. В результате ионные каналы закрываются и синапс возвращается в исходное положение . Холин реабсорбируется синаптическим окончанием и вновь превращается в ацетилхолин в синаптических пузырьках (рис. 17.11). Некоторые нервно-паралитические газы, инсектициды и другие яды ингибируют ацетилхолинэстеразу, нарушая тем самым нервное проведение, о чем говорилось в разд. 4.4.3. [c.288]

    Аналогичные опыты с изменением концентрации Ма в перфузируемом растворе выявили зависимость пикового значения потенциала действия от внутриклеточной концентрации Ма . При повышении концентрации Ма величина спайка уменьшалась, а при замене 50% калия на натрий в перфузируемом растворе проведение возбуждения прекраш алось. [c.169]

    Важнейшим свойством нервного импульса является его способность распро-страняться вдоль волокна без затухания с постоянной скоростью. Распространение возбуждения связано с протеканием локальных токов между покояш имися и активными (возбужденные) участками (рис. XXIII.32). Для простоты рассуждений примем, что внешняя поверхность аксона эквипотенциальна, т. е. внешняя среда хорошо проводит электрический ток. В области возникновения потенциала действия внутренняя часть волокна заряжена положительно, а в соседних невозбужденных участках — отрицательно. В результате возникает локальный ток между возбужденным и покояш имся участками нерва, который деполяризует мембрану непосредственно перед активным участком. При достижении критической деполяризации эта область также возбуждается. Подобным образом возбуждение передается дальше. Одностороннее проведение импульса по нервному волокну связано с тем, что участки, в которых потенциал действия завершен, теряют на некоторое время способность к возбуждению (рефрактерность).  [c.197]

    О способности УФ-света вызывать серьезные нарушения проницаемости мембран для ионов К+ и Ыа+ свидетельствуют и опыты по облучению возбудимых клеток. Так, ультрафиолетовое облучение уменьшает амплитуду спайка и скорость проведения нервного импульса. С помощью микроэлектродной техники на одиночном аксоне лягушки было показано, что проницаемость мембран для ионов К+ увеличивается (падение потенциала покоя) с ростом дозы УФ-облучения. Более того, с помощью УФ-облучения можно вызвать генерацию потенциала действия механорецепторов у рака и потенциал действия у водоросли ЫНеНа, что указывает на резкое увеличение проницаемости мембраны для ионов Ма+ (известно, что потенциал действия имеет в основном натриевую природу). [c.333]

    Железистые органы. Хорошим примером могут служить слюнные железы различных брюхоногих моллюсков. Клетки слюнных желез вырабатывают жидкость, содержащую пищеварительные ферменты. Эти клетки иннервируются волокнами определенного, доступного для идентификации нейрона буккаль-ного ганглия (нейрон 4) (рис. 19.2). Для того чтобы изучить регуляцию клеток слюнной железы, можно ввести внутриклеточные микроэлектроды в нейрон 4 и в одну из этих клеток. При подведении к нейрону 4 деполяризующего тока (рис. 19.2) в нем возникают одиночные потенциалы действия в результате этого в ацинарных железистых клетках после определенного латентного периода, необходимого для проведения импульса и синаптической передачи, создаются одиночные дискретные ВПСП. Если эти ВПСП достигают пороговой величины, генерируется потенциал действия. По-видимому, при этом внутрь железистых [c.28]

    Второй важный факт, касающийся потенциала действия, заклк>чается в том, что этот потенциал представляет собой кратковременную деполяризацию мембраны. Об этом также догадывались уже в прошлом веке, исходя из данных некоторых экспериментальных работ, однако прямое подтверждение было получено лишь при помощи внутриклеточной записи от аксона кальмара. В главе 6 (см. рис. 6.6) была описана экспериментальная установка, позволяющая регистрировать мембранные потенциалы от гигантских аксонов аналогичная установка показана на рис. 7.2. В первых же работах, проведенных исследователями из Рокфеллеровского института медицинских исследований К. Колем и Д. Кертисом (К- ole, D. urtis, 1939), было показано, что при возбуждении мембрана не просто деполяризуется, т. е. становится заряженной менее отрицательно изнутри, но разряжается до О и затем перезаряжается в момент пика потенциала действия она становится заряженной [c.152]

    Таким образом, последовательность событий при возбуждении рецептора растяжения следующая стимул —v возникновение рецепторного потенциала в окончаниях —электротоническое распространение рецепторного потенциала через дендриты и тело клетки к аксону —генерация потенциала действия в аксоне в результате его деполяризации до порогового уровня —> проведение потенциала действия по аксону (в ортодром-ном направлении) и его электротоническое распространение-в тело и дендриты рецепторной клетки (в антидромном направлении). ТПСП, возникающий при реакции на растяжение, препятствует возникновению потенциала действия, вызывая смещение мембранного потенциала по направлению к равновесному потенциалу для ТПСП (гиперполяризацию). [c.191]

    Биологические модели представляют собой биологические объекты, удобные для экспериментальных исследований, на которых изучаются свойства, закономерности биофизических процессов в реальных сложных объектах. Например, закономерности возникновения и распространения потенциала действия в нервных волокнах были изучены только после нахождения такой удачной биологической модели, как гигантский аксон кальмара. Опыт Уссинга, доказывающий существование активного транспорта, был проведен на биологической модели - коже лягушки, которая моделировала свойство биологической мембраны осуществлять активный транспорт. Закономерности сократимости миокарда устанавливают на основе модельных экспериментов на папиллярной мышце. [c.165]

    Если место восприятия раздражения и место ответной реакции на него пространственно разделены, то необходимо проведение возбуждения. Это проведение может происходить как посредством передачи потенциала действия, так и благодаря транспортировке возбуждающих веществ. Проведение потенциалов действия напоминает проведение раздражения нервами животных. Особенно быстро проведение возбуждения происходит у известного тропического растения мимозы стыдливой — Mimosa pudi a, с которой мы еще познакомимся ближе. [c.19]

    При химическом проведении возбуждения раздраженными клетками выделяется возбуждающее вещество, которое может перемещаться в растении по проводящей и основной тканям. Оно проходит не только через мертвые участки тканей, но и через заполненную водой стеклянную трубочку, соединяющую отрезанный лист с местом, от которого он был отделен. Если это вещество (предположительно речь идет о содержащей азот аминокислоте) дойдет до клеток сочленения, то есть до ткани, способной осуществлять движение, то последует ответная реакция. Выделенное в почти чистом виде возбуждающее вещество, поднимающееся в срезанных побегах мимозы по их проводящим тканям, оказывает свое действие уже при концентрации 10 г/мл. Раздражающе могут действовать также аминокислоты и другие соединения. Например, как показали исследования Шилдкнехта с сотрудниками (1978), смесь, состоящая из 20% L-глютаминовой кислоты и 80% 6-аланина, проявляет особенно сильное раздражающее действие (табл. 3). При проведении этих опытов двух-, четырехнедельные листья Mimosa pudi a, срезанные лезвием безопасной бритвы ниже первичного листового сочленения (рис. 34, а), помещали в водные растворы аминокислот при этом для проведения опытов наиболее благоприятными оказались температуры от 20 до 30° С. Скорость химического проведения раздражения достигает примерно от 0,15 до 2 см/с. Упомянем и второй способ проведения возбуждения — электрический. При нем потенциал действия распространяется со скоростью от 2 до 5 см/с. Путями его проведения, [c.126]

    Под влиянием афферентной импульсации ацетилхолин — белок распадается на белок и ацетилхолин, последний через ире-синаптические мембраны поступает в постсинаптические щели (везикулы). Далее при участии АХЭ происходит расщепление свободного АХ на уксусную кислоту и холин, который взаимодействует с холинорецепторными белками постсинаптических мембран. Доказательством участия АХ в процессе возникновения и проведения нервного импульса служит также тот факт, что в это же время наблюдается резкое повышение активности АХ-эстеразы, она расщепляет молекулу АХ иа уксусную кислоту и холин со скоростью 10 3 с. Таким образом, имеет место синхронность биохимических и биофизических процессов, которую можно объяснить тем, что молекула АХ-эстеразы имеет сотни активных центров с высоким сродством к АХ. Следовательно, в период изменения мембранного потенциала действия образуется достаточное количество АХ, что способствует возникновению и проведению нервного импульса в период электрической стадии кратковременной памяти. Таким образом, электрическая стадия кратковременной нсйрологичесж памяти принципиально отличается по механизмам от других видов биологической памяти, [c.242]

    В свое время Грингард высказал предположение что циклические нуклеотиды, вызывая фосфорилирование постсинаптической мембраны, могут открывать каналы пассивного транспорта ионов и тем самым быть посредниками в процессе возникновения возбул<дающе-го потенциала в ответ на связывание нейромедиаторов с рецепторами. Это предположение не подтвердилось, и автор впоследствии отказался от него. Скорость химических процессов (в данном случае — синтез циклических нуклеотидов, фосфорилирование и дефосфорилирование белков) недостаточна для того, чтобы опосредовать такие быстрые физические процессы, как развитие потенциала действия. Гормональные механизмы могут играть лишь дополнительную, вспомогательную роль в процессах развития, проведения и реализации нервных сигналов. Так, через систему циклических нуклеотидов может проявляться трофическое влияние нервной системы на ткань, которое заключается в из- [c.238]


Смотреть страницы где упоминается термин Потенциал действия проведение: [c.122]    [c.637]    [c.298]    [c.76]    [c.92]    [c.761]    [c.323]    [c.330]    [c.97]    [c.42]    [c.172]    [c.178]    [c.134]    [c.97]    [c.164]   
Нейробиология Т.2 (1987) -- [ c.169 , c.172 ]




ПОИСК







© 2025 chem21.info Реклама на сайте