Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучения спектры при возбуждении электрическим полем

    Во-вторых, Бор объяснил происхождение и характер спектра водорода. Давно было известно, что атомы водорода, активированные каким-либо способом (нагреванием или действием электрического поля), излучают свет. Спектр этого излучения состоит из воли строго определенной длины, т. е. спектр излучения не с1 лошной, а линейчатый. Согласно квантовой теории света это означает, что возбужденный атом водорода излучает кванты, об- [c.25]


    В приборах, предназначенных для измерения атомной флуоресценции, первичный анализатор излучения отсутствует, а вторичным анализатором излучения служит либо светофильтр, либо простой и дешевый монохроматор. Функцию кюветы в атомно-флуорес-центных приборах выполняет атомизатор, обеспечивающий перевод анализируемого образца в состояние атомного пера. В качестве атомизатора применяют пламена, аргоновуто высокочастотную индуктивно-связан-ную плазму, электротермические атомизаторы (нагреваемые электрическими током графитовые трубчатые печи, тигли). Для возбуждения спектров возбуждения атомов чаще всего используют высокоинтенсивные лампы с полым катодом и высокочастотные безэлектродные лампы. В последнее время для возбуждения спектров атомной фосфоресценции применяют лазеры с плавной перестройкой частоты (лазеры на красителях). [c.513]

    Эксперименты на пикосекундной временной шкале и более короткой требуют других подходов. Световая вспышка, вызывающая возбуждение или фотолиз молекул исследуемого вещества, генерируется лазером с пассивной синхронизацией мод, оснащенным системой выделения одиночного импульса из цуга. Хотя пикосекундная импульсная спектроскопия опирается на методику двух вспышек — возбуждающей и зондирую -щей,— импульс зондирующего света обычно получается за счет преобразования части света возбуждающей вспышки, а необходимая короткая временная задержка легко достигается благодаря конечной скорости света. Зондирующий световой пучок направляется по варьируемому более длинному оптическому пути. Для абсорбционных экспериментов спектр этого излучения может быть уширен (например, ССЬ преобразует малую часть излучения лазера на неодимовом стекле с длиной волны 1060 нм в излучение в широком спектральном диапазоне). Для других диагностических методик, например КАСКР, это излучение может быть преобразовано в излучение другой частоты. Существует также ряд специализированных методик для изучения испускания света в пикосекундном диапазоне. Одна из них связана с электронным вариантом стрик-камеры. Для регистрации временной зависимости интенсивности сфокусированного пучка или светового пятна в механическом варианте стрик-камеры используется быстро движущаяся фотопленка. В электронном варианте изображение вначале попадает на фотокатод специального фотоумножителя типа передающей телевизионной трубки. Под действием линейно изменяющегося напряжения, прилагаемого к пластинам внутри трубки, образующиеся фотоэлектроны отклоняются тем сильнее, чем позже они вылетели из фотокатода. Для регистрации мест попадания отклоненных электронов может использоваться фосфоресцирующий экран с относительно длинным послесвечением, изображение на котором фотографируется или преобразуется с помощью электроники для последующего анализа. Этот метод носит название электронно-оптической хроноскопии. В альтернативном методе для изучения флуоресценции с пикосекундным временным разрешением Используется затвор, основанный на эффекте Керра (вращение плоскости поляризации света в электрическом поле), индуцируемом открывающим лазерным импульсом. В еще одном методе (флуоресцентная корреляционная спектроскопия) часть света возбуждающего импульса проходит через оптическую линию задержки и смешивается с испускаемой флуоресценцией в нелинейном кристалле (см. конец разд. 7.2.3), давая на выходе [c.203]


    Спектры атомов других элементов. Серии линий были обнаружены и в атомных спектрах всех других элементов. В отличие от спектра водорода серии линий здесь не располагаются отдельно в различных участках спектра, а накладываются друг на друга. Тем не менее по определенным признакам (по внешнему виду линий - резкий или диффузный , т. е. размытый, по способу возбуждения излучения - дуговой или искровой, по мультиплетности, по характеру расщепления в магнитном и электрическом полях и др.) спектроскописты научились различать эти серии. [c.13]

    Расплавить электроды и поддерживать их в таком состоянии можно много быстрее и в более контролируемых условиях с помощью индукционной печи. Алюминиевый диск диаметром 18 мм и толщиной 8 мм [1] за 15—20 с можно нагреть до 900°С в графитовом тигле, находящемся внутри охлаждаемой водой индукционной медной катушки с эффективной мощностью 1 кВт. Промежуток между двумя верхними витками катушки (рис. 3.16) определяет место источника излучения и устанавливается на оптической оси спектрального прибора. В то же время этот промежуток обеспечивает градиент электрического поля, определяющий подходящую форму поверхности расплава. Воспроизводимость улучшается, если создать слабый поток воздуха в направлении, противоположном направлению распространения светового пучка. В индукционной печи расплав турбулентно перемешивается. Расплавляя таким способом смеси стандартных образцов, можно готовить эталонные образцы. Этим методом на спектрометре при возбуждении спектров в однополупериодной высоковольтной искре ( 7 = 12 кВ, С — 7 нФ, Г = 0,09 мГ, межэлектродный промежуток 4 мм, проба служит анодом) в алюминии определяли содержание меди, магния и цинка с высокой точностью (коэффициент вариации 0,53—0,77%, рассчитан из 30 измерений). Индукционная печь дает также то заметное преимущество, что не выделяется избыточное тепло и поэтому не перегружается устройство, контролирующее температуру. [c.109]

    Для точного соблюдения закона Бера поглощаемое атомами излучение должно иметь вид чрезвычайно узкой полосы, однако возможности монохроматоров в этом аспекте ограничены. Поэтому точную монохроматизацию излучения обеспечивает лампа. Источником необходимого излучения служит лампа с полым катодом, в которой между анодом и вторым электродом (катодом), изготовленным из определяемого элемента, возникает электрический разряд малой мощности. Атомы катода в возбужденном состоянии на фоне спектра, заполняющего лампу [c.80]

    Вид спектра существенным образом зависит от применяемого источника излучения. Он определяется не только энергией источника, но и способом возбуждения. В таких источниках, как разрядная трубка или дуга, возбуждение в основном производится ускоряемыми электрическим полем быстрыми электронами, энергия которых достаточна для возбуждения спектров, соответствующих переходам между э.лектронными состояниями с большой энергией, и даже спектров ионизованных молекул и атомов. В пламенах возбуждение молекул в основном имеет либо тепловую, либо химическую природу, причем в обоих случаях величины энергии весьма ограничены, так что наблюденные спектры всегда соответствуют переходам между состояниями с малой энергией. Все изученные до настоящего времени полосатые спектры пламен соответствуют переходам на основной электронный уровень ). [c.40]

    Лампа с полым катодом состоит из небольшой герметически закрытой камеры, в которой находится металлический катод, имеющий форму маленькой трубки. Камера обычно откачивается, а затем наполняется инертным газом (например, аргоном) при низком давлении. Тщательной регулировкой давления добиваются того, чтобы электрический разряд возникал внутри катода. Вещество, спектр которого требуется возбудить, помещают внутрь катода либо изготавливают из него катод. Когда к электродам прикладывается напряжение, положительные ионы соударяются с поверхностью катода и вызывают его распыление. Таким образом, в электрическом разряде появляются атомы металла, некоторые из которых возбуждаются и испускают резонансное излучение. Интенсивность этого излучения можно увеличить в сотни раз, введя для дополнительного возбуждения атомов изолированные вспомогательные электроды, к которым прикладывается напряжение около 500 В. Полый катод позволяет получить очень узкие спектральные линии и поэтому очень удобен для работ, в которых требуется высокое разрешение, например в изотопном анализе. [c.94]

    СВОЮ энергию на ионизацию, возбуждение и частично на диссоциацию молекул. Часть этой энергии преобразуется в энергию излучения—сцинтилляции. Фотоны сцинтилляций, попадая на катод ФЭУ, выбивают из него электроны, каждый из которых, ускоряясь в электрическом поле на пути к первому диноду, получает энергию, достаточную для того, чтобы выбить из него п электронов. Этот процесс, развиваясь лавинообразно от дннода к диноду, создает на выходе ФЭУ электрический импульс, пропорциональный количеству электронов, выбитых из фотокатода. С выхода ФЭУ импульс подается на усилитель, а затем на дискриминатор, который выделяет из всего спектра импульсов только те, амплитуда которых соответствует энергии когерентно рассеянных рентгеновских фотонов. [c.98]


    Фотохимические методы развиваются преимущественно с ориентацией на разделение изотопов одного элемента в препаративных и технологических целях. В качестве источника монохроматического электромагнитного излучения обычно используют лазеры. В этом случае относительная сложность процесса разделения компенсируется уникальной селективностью метода, определяемой малой спектральной шириной лазерного излучения. Для эффективного разделения необходимо, чтобы в спектре поглощения выбранного газообразного соединения или паров элемента наблюдался изотопный сдвиг, т.е. различие положений линий в спектрах отдельных изотопов. С максимальной точностью также должна совпадать длина волны лазерного излучения и длина волны, соответствующая энергии перехода из основного в возбужденное состояние одного из изотопов. Дополнительным обязательным условием является необратимое превращение исходного соединения изотопа в новую химическую форму в результате индуцированной фотохимической реакции или достаточное время жизни изотона, возникшего в результате фотовозбуждения, следствием чего может бытьреализован процесс последующего выделения изотопа под действием электрического поля. [c.246]

    Сочетание фотоионизации и масс-спектрометрии впервые было осуществлено Лоссингом и Танака [1268]. Для получения спектра они использовали не монохроматор, а прямое ультрафиолетовое излучение криптоновой разрядной лампы. Разрядную лампу подсоединяли к окошку из фтористого лития толщиной 0,5 мм. Такое окошко пропускает,75% лучей, имеющих длину волны 1300А и 45% лучей с длиной волны 1070 А. Ниже этой длины волны (эквивалентной 11,6 эв) пропускание резко падает. Масс-спектры, полученные при помощи этого устройства (1,3-бутаДиен, ацетон, 1-бутен, пропилен, анизол, диметилртуть), состояли в основном из молекулярных ионов с интенсивностью 10 а, но в случае иодистого аллила наблюдались также ионы аллила. Возможно также осуществить ионизацию метильного радикала. Во всех случаях получались очень слабые вторичные спектры, и даже в случае таких молекул, как метан, ионизационный потенциал которых слишком высок, чтобы под действием фотонов мог получиться спектр, все же наблюдался вторичный спектр. Действительно, ионы могут образовываться различными непрямыми путями. Например, с поверхности, бомбардируемой фотонами, могут эмитироваться фотоэлектроны, которые, будучи ускорены рассеянными электрическими полями, вызовут образование ионов. Кроме того, ионы могут образоваться в двухступенчатом процессе, включающем ионизацию возбужденной молекулы. Для подавления этого процесса работу следует проводить при низком давлении газа и низкой интенсивности облучения. Расчеты Лоссинга и Танака показали, что отношение ионов, поступающих на коллектор, к числу квантов в ионизационной камере составляет величину 1 10 аналогичное соотношение получается при [c.129]

    Следствием рассмотренных процессов может быть неоднородное распределение оптически активных центров по кристаллу. Так, синие центры 2п5-Си-люминофоров образуются преимущественно в области дислокаций и межблочных поверхностей. Это существенно сказывается на оптических свойствах люминофоров, приводя к необычной зависимости спектрального состава излучения от температуры [60]. Например, в спектрах рентгенолюминесценции гексагональных 2п5-1-10 Си-фосфоров, полученных в среде 10% НС1-Ь90%Н25, при понижении температуры увеличивается доля зеленой, а не синей полосы излучения, в то время как при возбуждении линией ртути 365 нм распределение энергии в спектре претерпевает противоположное изменение. Это объясняется тем, что при возбуждении люминофора излучением, поглощаемым основной решеткой, при низких температурах в более выгодном положении в смысле перехвата энергии оказываются равномерно распределенные по кристаллу зеленые центры свечения, так что отношение концентраций возбужденных зеленых и синих центров становится больше той величины, которая отвечает квазирав новесию между валентной зоной и уровнями центров. При возбуждении же линией 365 нм положение изменяется в пользу синих центров, поскольку именно они наиболее эффективно поглощают возбуждающий свет, в то время как основная решетка 2п5 является для него прозрачной. Повышение температуры усиливает обмен энергией между центрами, приводя к увеличению относительной интенсивности синей полосы в первом случае и зеленой во втором. Поскольку при электролюминесценции с дислокациями связаны также области концентрации электрического поля и скопления Си25, служащие источниками разгоняемых полем электронов, то в этом случае в преимущественном положении оказываются синие центры, чем и объясняется тот факт, что при возбуждении электролюминофоров импульсным напряжением вначале ионизуются главным образом синие , а затем зеленые центры [41]. [c.176]


Смотреть страницы где упоминается термин Излучения спектры при возбуждении электрическим полем: [c.38]    [c.10]   
Неорганические люминофоры (1975) -- [ c.11 , c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Возбуждение электрическим полем

Поле электрическое



© 2025 chem21.info Реклама на сайте