Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышечные клетки

    Брожение является также жизненно важным процессом и для человеческого организма. Хотя в обычных условиях наши мышцы получают вполне достаточные количества кислорода, чтобы произошло окисление пирувата и образование АТР аэробным путем, бывают обстоятельства, когда поступление кислорода оказывается недостаточным. Например, при крайнем напряжении сил, когда уже весь запас кислорода израсходован, мышечные клетки образуют лактат путем брожения. Более того, в белых мышцах рыб или домашней птицы аэробный метаболизм относительно невелик, и основным конечным продуктом оказывается L-лактат. В организме человека есть такие ткани, которые слабо снабжаются кровью, например хрусталик и роговица глаза. В клетках этих тканей окислительный метаболизм выражен слабо, а энергия в основном образуется при сбраживании глюкозы в лактат. [c.345]


    Процесс развития животного из оплодотворенного яйца — одно из наиболее замечательных биологических явлений. Из первых, очень сходных между собой эмбриональных клеток в ходе всего нескольких клеточных делений возникают дифференцированные органы и ткани, такие, как печень, мозг, почки, кожа и эритроциты. Дифференцированные клетки характеризуются, как правило, высокоспециализированными биохимическими свойствами. Так, эритроциты содержат гемоглобин, тогда как в мышечных клетках в больших количествах образуются миозин и актин. В эндокринных клетках поджелудочной железы синтезируются инсулин и глюкагон, а в экзокринных-—пищеварительные ферменты, которые секретируются в пищеварительный тракт. В целом считается, что в клетках специализированных тканей одновременно транскрибируется не более 10% общего количества генов (исключение составляет ткань мозга см. разд. Б, 8). Методом химического анализа четко установлено, что специализированные клетки содержат нормальное количество ДНК, т. е. полный набор генов, но 90% этого количества не функционирует. [c.352]

    В световом микроскопе в миофибриллах видны поперечные линии, отстоящие друг от друга на расстоянии примерно 2,5 мкм (рис. 4-21 и 4-22). Область между двумя плотными Z-пластинками, называемая саркомером, является главным сократительным элементом мышечной клетки. В центре саркомера имеется плотная анизотропная полоса (обладающая сильным двойным лучепреломлением), получившая название А-диска. Продолжением Z-пластинок являются менее интенсивные [c.318]

    Молочная кислота (СН3СНОНСООН) распространена в растениях. Правовращающая соль ь-молочной кислоты является конечным продуктом анаэробного (т. е. протекающего без доступа воздуха) гликолиза. Поскольку мышечные клетки животных получают энергию благодаря реакции гликолиза содержание молочной кислоты в мышцах пропорционально со вершаемой ими работе. Рацемическая форма этой кислоты об разуется при различных микробиальных процессах (брожении) Мевалоновая кислота в форме дифосфорного эфира учасг вует в биосинтезе изопреноидов. [c.184]

    Проследите за перемещением ионов Са + внутри клетки, благодаря которым запускается процесс сокращения миофибрилл начиная с момента, когда нервный импульс достигает мышечной клетки (в скелетной мышце млекопитающего), и кончая завершением процесса сокращения. Назовите специфические белки и (или) структуры, участвующие в рассматриваемых процессах. [c.399]

Рис. 15-72. Если у куриного эмбриона после двух дней инкубации заменить клетки сомитов такими же клетками перепела и сделать спустя неделю срез крыла, то окажется, что мышечные клетки крыла образовались нз трансплантированных сомитов перепела. Рис. 15-72. Если у <a href="/info/1375764">куриного эмбриона</a> после <a href="/info/1696521">двух</a> <a href="/info/289336">дней</a> инкубации <a href="/info/1396872">заменить клетки</a> сомитов такими же клетками перепела и сделать спустя неделю срез крыла, то окажется, что мышечные клетки крыла образовались нз трансплантированных сомитов перепела.

    Хотя в химических основах механизма дифференцировки клеток еще много неясного, все же известно, что в этом процессе исключительно важную роль играют химические сигналы, поступающие из внешней среды и от прилегающих клеток. Эти сигналы запускают внутреннюю, генетически детерминированную программу развития, определяющую путь дифференцировки отдельных клеток. С какой точностью выполняется программа развития, можно показать на примере коловраток и кольчатых червей (рис. 1-10), отдельные виды которых характеризуются почти непогрешимым постоянством числа клеток. Так, у нематоды Oxyuris equi имеются точно 251 нервная клетка, одна экстреторная клетка, 18 клеток средней кишки и 64 мышечные клетки [140]. [c.352]

    Принято считать, что процессом, непосредственно связанным с работающим механизмом поперечно-полосатого мышечного волокна, является распад АТФ с образованием АДФ и неорганического фосфата. Возникает вопрос каким образом мышечная клетка может обеспечить свой сократительный аппарат достаточным количеством энергии в форме АТФ, т.е. каким образом в процессе мышечной деятельности происходит непрерывный ресинтез этого соединения  [c.654]

    В поперечном сечении мышцы волокна миозина часто находятся в гексагональной упаковке (рис. 2,г,д). У некоторых групп животных, а именно у членистоногих, толстые волокна представляются пустотелыми или просто более прозрачными в направлении вдоль их осей при наблюдении в электронном микроскопе (рис. 2,г,д и 6). Это строение, показанное на рис. 2, в, повторяется вдоль всей мышечной клетки (рис. 3). [c.287]

    В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль аксона, пока не достигнет его окончания-места контакта с мышечной, клеткой. Здесь под его воздействием открываются потенциал-зависимые кальциевые каналы, и ионы Са входят в аксон, в результате чего клетка путем экзоцитоза высвобождает ацетилхолин. [c.96]

    Наиболее известный факт, говорящий о существовании клеточной памяти,-это стойкое сохранение дифференцированного состояния клеток во взрослом организме (см. гл. 16). Благодаря клеточной памяти неделящиеся клетки (например, нейроны) сохраняют свои характерные особенности, а делящиеся передают их потомкам. Однако дифференцировка, проявляющаяся внешне,-это обычно лишь последний этап длительного процесса. Благодаря клеточной памяти стимулы, направляющие клетку на тот или иной путь дифференцировки, могут оказывать свое действие значительно раньше. Например, в сомитах некоторые клетки на очень раннем этапе специализируются как предшественники мышечных клеток, а затем мигрируют из сомитов в те участки, где будут формироваться конечности (подробнее см. в разд. 15.9.3). Эти предшественники еще не содержат больших количеств специализированных сократительных белков, характерных для зрелых мышечных волокон они даже внешне не отличаются от других клеток зачатка конечности, которые происходят не из сомитов. Только через несколько дней они приобретают внешние признаки дифференцировки и начинают интенсивно синтезировать специфические мышечные белки. Остальные клетки будущей конечности, расположенные здесь же, дифференцируются в элементы соединительной ткани. Следовательно, выбор программы развития в мышечную клетку или же в соединительнотканную клетку произошел задолго до того, как это проявилось во внешней диффереицировке. Вероятно, эта программа была записана в клетках в виде менее явных химических изменений. [c.75]

    У куриного эмбриона мышечные клетки появляются в почке конечности в результате миграции нз сомитов [62] [c.122]

    В культуре ткани миобласты удавалось поддерживать в пролиферирующем состояния до двух лет. Все это вр я они сохраняли способность к слиянию и к диффереицировке в мышечные клетки при надлежащем изменении условий культивирования. Процесс слияния является кооперативным сливающиеся миобласты так изменяют состав культуральной среды, что побуждают к слиянию другие миобласты. Подготовка отдельных миобластов к слиянию, по-видимому, сопряжена также с событиями клеточного цикла слияние происходит только во время фазы О]. [c.171]

    Другим важным представителем хромопротендов может служить миоглобин. Этот протеид придает красную окраску мышцам и обеспечивает сохранение запаса кислорода в мышечных клетках путем превращения и устойчивый оксимиоглобин. [c.451]

    Ее катализирует фермент креатинкиназа, к-рая представлена в клетках двумя формами (цитоплазматич. и митохондриальной), различающимися по своим св-вам. В условиях, когда энергия АТФ мышечной клетки расходуется на ее сокращение (при зтом образуется АДФ и HjPO ), равновесие Р ЦИИ смещается вправо и нормальный уровень АТФ восстанавливается. Содержание К. к. в покоящейся мышце в [c.506]

    Карнозин и ансерин—специфические азотистые вещества скелетной мускулатуры позвоночных. Они увеличивают амплитуду мышечного сокращения, предварительно сниженную утомлением. Работами акад. С.Е. Северина показано, что имидазолсодержащие дипептиды не влияют непосредственно на сократительный аппарат, но увеличивают эффективность работы ионных насосов мышечной клетки. [c.651]

    В зрелой иннервированной мышечной клетке ацетилхолиновые рецепторы не распределяются равномерно по всей клеточной мембране, их концентрация в субсинаптической области концевой пластинки в 100 раз выще, чем во внесинаптической. [c.328]


    Связывание ацетилхолина с мускариновыми рецепторами сопровождается увеличением концентрации циклических нуклеотидов, а взаимодействие с никотиновыми рецепторами приводит к открытию ионных каналов и соответственно изменению ионной проницаемости постсинаптической мембраны. Как следствие происходит деполяризация клеточной мембраны за счет быстрого входа ионов натрия, что в конечном итоге ведет к возбуждению мышечной клетки. Следовательно, биологическая функция никотинового ацетилхолинового рецептора заключается в изменении ионной проницаемости постсинаптической мембраны в ответ на связывание ацетилхолина. После зтого ацетилхолин гидрюлизуется ацетилхолинэсте-разой до холина и рецептор переходит в исходное состояние, [c.628]

    В синапсе мембрана мышечной клетки ведет себя как преобразователь, который превращает химический сигнал, т.е. определенную концентрацию нейромедиатора, в сигнал электрический. Это осуществляется с помощью ли-ганд-зависимых ионных каналов, находящихся в постсинаптической мембране. Связывание нейромедиатора с этими каналами с наружной стороны мембраны вызывает изменение их конформации-каналы открываются, пропуская через мембрану ионы и тем самым изменяя мембранный потенциал. В отличие от потенциал-зависимых каналов, ответственных за возникновение потенциалов действия и выделение медиатора, лигаяд-зависимые каналы относительно нечувствительны к изменениям мембранного потенциала (рис. 18-29) и потому не способны к самоуснливающемуся возбуждению типа все или ничего . Вместо этого они генерируют электрический сигнал, сила которого зависит от интенсивности я продолжительности внешнего химического сигнала, т.е. от того, сколько медиатора выводится в синаптическую щель и как долго он там остается. Это свойство лиганд-зависимых каналов важно для обработки информации в синапсах, и мы рассмотрим его позднее. [c.99]

    Характерным компонентом мышечной клетки являются сократительные элементы — миофибриллы. Они содержат сократительные белки — миозин и актин и регуляторные белки — тропомиозин и тропонин. Белки миофибрилл не растворяются в воде, но их можно экстрагировать из мышечной ткани солевыми растворами с концентрацией соли 0,5 моль/л. Многие белки саркоплазмы (гиалоплазма мышечных клеток) растворимы в воде или в солевых растворах низкой концентрации (0,05 моль/л). Эта фракция содержит также и такие белки, которые имеются не только в мышечных, но и в других клетках. При экстракции мышечной ткани 5%-ным раствором K l извлекаются как миофибрилляр-ные, так и саркоплазматические белки. [c.5]

    Мышечные клетки содержат два сорта белковых волокон толстые волокна, построенные из миозина, и тонкие — из актина (рис. 2). Эти волокна лежат параллельно продольной оси клетки и образуют раздельные системы, заходяшие более или менее глубоко во взаимное зацепление в зависимости от степени сокращения мышцы [61, 62]. Короткие поперечные мостики связывают между собой обе системы. Типичная картина наблюдается в поперечнополосатых мышцах. Тонкие волокна актина присоединены к так называемым 2-полосам, также состоящим из белка. Миозиновые волокна образуют регулярные А-полосы, расположенные на равных расстояниях между 2-полосами. Сеть образующих А-полосы мио-зиновых волокон пронизана тонкими волокнами актина (рис. 2, в). [c.285]

    Не так давно физиологи и ученые нового направления — биофизики — установили, что двойной электрический слой возникает, оказывается, не только на границе между электродом, сделанным нашими руками, и каким-либо раствором, но он есть в мышечных и нервных волокнах, составляющих живую ткань. Специальными микроэлектродами можно измерить разность потенциалов между внутренней и внешней частью нервной или мышечной клетки. Установлено, что она составляет примерно 60— 100 мв, причем внутренняя часть клетки по сравнению с околоклеточной жидкостью заряжена отрицательно. Этй разность потенциалов носит название потенциала покоят [c.82]

    На примере открытия электрохимических свойств нервных и мышечных клеток мы видим, каким сложным и извилистым путем идет иногда развитие нгГуки открытие Гальвани — разгром его теории животного электричества — развитие современных представлений о двойном электрическом слое и вновь — животное электричество в нервных и мышечных клетках. [c.83]

    Организм любого многоклеточного животного можно рассматривать как клон клеток, образовавшихся из одной клетки-оплодотворенного яйца. По-этому клетки тела, как правило, генетически идентичны, но различаются по фенотипу одни становятся мышечными клетками, другие-нейронами, третьи- клетками крови и т.д. В организме клетки разного типа размещены строго упорядоченным образом, и благодаря этому тело обладает характерной формой. Все признаки организма определяются последовательностью нуклеотидов в геномной ДНК, которая воспроизводится в каждой клетке. Все клетки получают одни и те же генетические инструкщш , но интерпретируют их с должным учетом времени и обстоятельств-так, чтобы каждая клетка выполняла свою специфическую функцию в многоклеточном сообществе. [c.53]

    Клетки некоторых типов, для того чтобы достичь места своего назначения, преодолевают большие расстояния, мигрируя через другие ткани зародыша. Один из примеров-первичные половые клетки их окончательная локализация в организме частично определяется гибелью тех клеток, которые осели в неподходящих местах. Из мигрирующих предшественников образуются также мышечные клетки конечностей у позвоночных. Еще один важный пример-клетки нервного гребня. Они служат предшественниками клеток многих типов, в том числе меланоцитов, периферических нейронов и глии, а также соединительной ткани головы. Клетки нервного гребня, тходившиеся в разных участках продольной оси тела, мигрируют по разным маршрутам, направление которых определяется, вероятно, механическими контактами или же химическими факторами внеклеточного матрикса и клеточных поверхностей. До начала миграции клетки нервного гребня детерминированы не полностью например, клетки, из которых в норме образуются парасимпатические нейроны, после пересадки в другой участок нервного гребня дают начало симпапш-ческим нейронам. Можно показать, что дифференцировка этих мигрирующих клеток определяется окружением, в котором они обосновались. Элементы миграционного поведения характерны для всех нейронов, и эта особенность играет важную роль в развитии нервной системы. [c.126]

    Мышечные волокна приводятся в действие нервами, и описанная выше специализация бьша бы бесполезной, если бы каждому типу мышцы не соответствовал определенный характер импульсации в их двигательных нервах. Как же осуществляется это согласование, при котором аксоны, побуждающие мышцу к длительному сокращению, иннервируют красные волокна, а аксоны, передающие команды для быстрого ритмического сокращения, иннервируют белые волокна Ответ можно получить в опытах с двумя соседними мышцами-медленной и быстрой-в конечности крысы (рнс. 16-44). Нервы этих двух мышц перерезают и затем перекрещивают так, что каждый нерв врастает в мышцу не соответствующего ему типа и иннервирует ее. После этого свойства мышц изменяются быстрая становится медленной, а медленная-бы-строй. Очевидно, нервы диктуют мышцам выбор дифференцированного состояния. Какие бы другие различия ии существовали между этими двумя нервами, во всяком случае ясно, что онн подают сигналы разного типа. Медленный нерв передает главным образом растянутые залпы импульсов, повторяющихся в каждом залпе с низкой частотой, а быстрый -короткие залпы с высокой частотой импульсов. Эти типы импульсации можно воспроизводить, перерезав нерв и стимулируя мышцу непосредственно через вживленные металлические электроды. Мышца, ис1 сственно стимулируемая таким способом в течение нескольких недель, при подаче медленных сигналов становится медленной, а при подаче быстрых сигналов-быстрой. Таким образом, очевидно, что характер электрической стимуляции определяет картину зкспрессии генов в мышечной клетке. Это еще один пример модуляции дифференцированного состояния изменения в генной экспрессии незначительны и обратимы, и мышечное волокно остается мышечным волокном, хотя могут измениться его миозин, содержание миоглобииа и набор ферментов метаболизма. [c.174]

    Метод пэтч-клампа дает редкую, почти уникальную возможность наблюдать кинетику поведения единичной белковой молекулы. Идея сама по себе проста, но осуществить ее-дело довольно хитрое. Стеклянную микропипетку, заполненную солевым раствором, прижимают к поверхности клеткн и через верхний конец слегка всасывают воздух, так чтобы мембрана втянулась в кончик микропипетки (рис. 18-13) если стекло чистое и мембрана ие покрыта снаружи внеклеточным материалом, область контакта не будет пропускать тока Ток может теперь проходить в пипетку только через белковые каналы в мембране, закрывающей кончик пипетки. Если плотность расположения каналов невелика, а диаметр носика пипетки меньше 1 мкм, то в выделенном участке мембраны каналов будет немного-иногда только один или вообще ни одного. С помощью современной электронной аппаратуры можно регистрировать и измерять токи силой всего лишь около 10"А, протекающие через единственный канал при изменении разности потенциалов на данном участке мембраны. На рис. 18-14 представлено несколько типичных записей тока в одном потенциал-зависимом натриевом канале из мышечной клетки крысы. Видно, что канал открывается по принципу всё или ничего . Открытые каналы обладают одинаковой проводимостью, но открываются и закрываются независимо друг от друга. Значит, суммарный ток через мембрану всей клетки с ее многочисленными каналами определяется не степенью открытия каналов, а вероятностью быть открытым для отдельного канала. [c.82]

    Скелетные мышечные волокна позвоночных, подобно нервным клеткам, способны возбуждаться под действием электрического тока, и нервно-мышечное соедшенае (рис. 18-24) может служить хорошей моделью химического синапса вообще. На рис. 18-25 сравнивается тонкая структура этого синапса с типичным синапсом между двумя нейронами головного мозга. Двигательный нерв и иннервируемую им мышцу можно отделить от окрузкаюшей ткани и поддерживать в функционирующем состоянии в среде определенного состава. Возбуждая нерв через наружные электроды, можно с помошью внутриклеточного микроэлектрода регистрировать ответ одиночной мышечной клетки (рис. 18-26). Микроэлектрод сравнительно легко ввести в волокно скелетной мышцы, так как это очень крупная клетка (порядка 100 мкм в диаметре). [c.96]

    Распределение ионных каналов в мембране мышечной клетки изменяется в ответ на денервацню [27] [c.112]


Смотреть страницы где упоминается термин Мышечные клетки: [c.143]    [c.474]    [c.529]    [c.295]    [c.170]    [c.111]    [c.178]    [c.271]    [c.329]    [c.329]    [c.365]    [c.28]    [c.254]    [c.123]    [c.285]    [c.122]    [c.173]    [c.175]    [c.83]    [c.100]    [c.101]    [c.113]   
Биология Том3 Изд3 (2004) -- [ c.83 , c.191 , c.281 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.141 ]




ПОИСК







© 2025 chem21.info Реклама на сайте