Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Функциональное пространство стационарных состояний

Рис. VI- . Линия стационарного состояния в функциональном пространстве и ее проекции. Рис. VI- . <a href="/info/774530">Линия стационарного</a> состояния в <a href="/info/92565">функциональном пространстве</a> и ее проекции.

    ФУНКЦИОНАЛЬНОЕ ПРОСТРАНСТВО СТАЦИОНАРНЫХ СОСТОЯНИЙ [c.116]

    Если пытаться поступить подобным образом в случае дифференциальных уравнений в частных производных, то могут возникнуть по крайней мере две альтернативы либо одна из зависимых переменных разбивается на бесконечный ряд дискретных значений переменной состояния, либо состояние системы рассматривается как последовательность профилей, а в качестве траектории принимается поверхность, образованная движением линий профиля во времени в функциональном пространстве стационарных состояний. Первая из этих возможностей связана с конечно-разностной аппроксимацией, которая применяется в численном анализе дифференциальных уравнений в частных производных. Однако вторая возможность более приемлема, поскольку она приводит к удобной геометрической интерпретации. [c.116]

    Наглядность изображения функционального пространства стационарных состояний теряется, если число зависимых переменных превышает 2. Сложности, возникающие в пространстве большей размерности могут быть исследованы на примере моделей, учитывающих радиальные градиенты. В этом случае стационарное состояние определяется дифференциальным уравнением в частных производных с двумя пространственными переменными — продольной и поперечной координатами. Решения в форме [c.117]

    Этому вряд ли приходится удивляться, если, помимо того что индуцированный шумом переход в модели Ферхюльста не может быть непосредственно отождествлен с критической точкой, мы учтем то, о чем говорилось в разд. 6.3. Как подчеркивалось там, состояние системы описывается случайной переменной Хг. Именно с этой фундаментальной величиной, а не с моментами, даже не всегда характеризуюпдими случайную величину, необходимо иметь дело. Распространенное мнение о том, будто моменты полностью характеризуют случайную величину, восходит к анализу систем с внутренними флуктуациями, которые макроскопически малы. Некритическое распространение понятий, развитых для описания малых ситуаций, на ситуации с внешним шумом чревато опасностью и препятствует подлинному пониманию всего круга явлений, связанных с внешним шумом. Если в системе имеются флуктуации, то единственным надежным отправным пунктом служит то тривиальное обстоятельство, что состояние системы описывается случайной величиной. В разд. 6.3 мы показали, что стационарный случай удается строго обосновать, опираясь на этот твердо установленный факт. Переход происходит при условии, если случайная величина — индикатор состояния системы, а не какая-то производная от нее величина (например, моменты) претерпевает качественное изменение. Это качественное изменение функциональной зависимости для отображения, действующего из пространства элементарных событий в пространство состояний, в силу принятого нами соглашения (2.15) эквивалентно качественному изменению в распределении вероятности. Как лучше отследить такое качественное изменение — вопрос, представляющий несомненный практический интерес. В разд. 6.3 мы показали, что по аналогии с детерминированным случаем это лучше всего делать, исследуя поведение экстремумов стационарной плотности вероятности рзМ. (Единственным исключением является переход от вырожденной к подлинно случайной величин е,, при котором в качестве наиболее подходящего параметра выступает дисперсия. Мы видели также, что экстремумы имеют особый физический смысл. Их можно отождествить с макроскопическими фазами системы и использовать для задания параметра порядка перехода (как было показано в разд. 6.5). Короче говоря, для того чтобы уста новить, наблюдается ли критическое замедление в индуцированных шумом критических точках, нам необходимо исследовать динамику случайной. личины X , т. е. релаксацию одной функциональной зависимости к другой По причинам, подробно изложенным в разд. 6.3 и повторенным выше, это удобнее всего делать, прослеживая динамику экстремумов. Неудивительно поэтому, что, как будет показано ниже, критическое замедление [c.206]



Смотреть страницы где упоминается термин Функциональное пространство стационарных состояний: [c.117]    [c.117]    [c.100]    [c.148]    [c.41]   
Смотреть главы в:

Устойчивость химических реакторов -> Функциональное пространство стационарных состояний

Устойчивость химических реакторов -> Функциональное пространство стационарных состояний




ПОИСК





Смотрите так же термины и статьи:

Пространство

Состояния стационарные



© 2025 chem21.info Реклама на сайте