Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы симметрии и классификация кристаллических форм

    Элементы симметрии и классификация кристаллических форм. [c.118]

    Важнейшая особенность кристаллов состоит в том, что они являются симметричными фигурами, отдельные части которых можно полностью совместить друг с другом либо поворотом, либо зеркальным отражением. Симметрия кристаллов является характерным признаком, посредством которого можно провести классификацию кристаллических форм. В кристаллах различают следующие элементы симметрии. Плоскость симметрии—воображаемая плоскость, разделяющая кристалл иа две части так, что одна из частей является зеркальным отражением другой. Ось симметрии — линия, при вращении вокруг которой кристалл несколько раз может совместиться с самим собой. Центр симметрии — точка внутри кристалла, в которой пересекаются и разделяются пополам линии, соединяющие соответственные точки на поверхности кристалла. [c.69]


    Представления об элементах симметрии и классификации кристаллических форм. Отображением пространственной структуры монокристалла служит его кристаллическая решетка. Таким образом, различие геометрических форм кристаллов тех или иных веществ связано с особенностями симметрии их кристаллических решеток. Обычно оценивают следующие элементы симметрии в монокристалле оси симметрии, плоскости симметрии и центры симметрии. Если при повороте на определенный угол вокруг воображаемой оси кристаллическая решетка совмещается сама с собой, то это свидетельствует о наличии в кристалле оси симметрии. Если в кристалле можно провести одну или несколько плоскостей таким образом, что одна часть кристаллической решетки будет зеркальным отображением другой, значит в кристалле наличие плоскостей симметрии. Наконец, когда отражение всех узлов решетки в какой-либо точке кристалла приводит к их совмещению, говорят о существовании центра симметрии. В 1890 г. Е. С. Федоров провел расчет всех возможных сочетаний элементов симметрии и установил, что число устойчивых сочетаний равно 230. По-видимому, этой цифрой исчерпывается все многообразие возможных кристаллических структур в природе. [c.74]

    Понятие об элементах симметрии и классификации кристаллических форм [c.141]

    Подобно внешним формам кристаллов, кристаллические решетки могут быть классифицированы по их симметрии. Еще задолго до разработки экспериментальных методов исследования структуры в 1890 г. такая классификация была выведена математически Е. С. Федоровым, который показал, что для решеток возможно 230 вариантов сочетания элементов симметрии. Эти сочетания получили названия федоровских групп симметрии. Комбинаций элементов симметрии для кристаллических решеток значительно больше (230), чем для внешних форм кристаллов (32), вследствие появления дополнительных элементов, характеризующих внутреннюю симметрию кристаллов. [c.261]

    Разделение всего времени химической эволюции на периоды сильных и слабых взаимодействий не имело бы серьезного основания, если бы дело касалось классификации реакций, например, по значениям термодинамических потенциалов. Такое деление оправдывается тем, что в период сильных взаимодействий критерием выбора пути реакции действительно служили изменения соответствующих термодинамических функций и вариации структурного характера были весьма ограничены. Значительные энергетические эффекты обеспечивали преодоление барьеров, создаваемых пространственными факторами. В итоге образовались те самые продукты бурной деятельности химических процессов, которые относятся к царству минералов и удивляют нас совершенством кристаллических форм, богатых элементами симметрии, и очень большими отрицательными значениями энергии Гиббса AG°. [c.379]


    Симметрия кристаллов является тем характерным признаком, с помощью которого можно провести классификацию кристаллических форм. Симметричные кристаллы обладают одним или несколькими элементами симметрии, которыми являются центр симметрии, оси и плоскости. Центром симметрии (центром инверсии) тела называется точка, в которой может отразиться каждая точка данного тела. Например, для тела, изображенного на рис. П1.48, а, возьмем точку А и соединим ее с центром инверсии О. Затем продолжим прямую линию за точку О на равный отрезок. В результате попадаем в точку А, во всех отношениях подобную исдодной точке А. Аналогичные операции можно провести со всеми остальными точками тела, чтобы убедиться, что точка О является центром симметрии. Центр симметрии может быть иногда единственным элементом симметрии кристалла, как, например, в кристаллах медного купороса. [c.234]


Смотреть главы в:

Курс химии -> Элементы симметрии и классификация кристаллических форм




ПОИСК





Смотрите так же термины и статьи:

Симметрия, элементы

Элемент классификация

классификация по симметрии



© 2025 chem21.info Реклама на сайте