Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые применения формулы Лапласа

    Некоторые применения формулы Лапласа [c.510]

    Таким образом, динамика процесса абсорбции в насадочном аппарате в режиме идеального вытеснения без труда может быть описана с помощью формул, аналогичных уже полученным для противоточного теплообменника. Значительно сложнее исследовать динамику насадочного абсорбера в том случае, когда нельзя пренебречь продольным перемещиванием. При использовании одно-параметрической диффузионной модели абсорбер описывается уравнениями (1.2.30), (1.2.31) с граничными условиями (1.2.37) (считаем, что расходы по жидкости и газу постоянны). Как и раньше, будем полагать, что функция 0 (0 ) имеет линейный вид 0д = Г01. При этом функциональный оператор А, задаваемый с помощью уравнений (1.2.30), (1.2.31), граничных условий (1.2.37) и нулевых начальных условий будет линейным. Но поскольку уравнения математической модели являются уравнениями в частных производных второго порядка, исследовать этот линейный оператор очень трудно. С помощью применения преобразования Лапласа по t к уравнениям и граничным условиям можно получить выражение для передаточных функций. Однако они будут иметь столь сложный вид по переменной р, что окажутся практически бесполезными для описания динамических свойств объекта. Рассмотрим математическую модель насадочного абсорбера с учетом продольного перемешивания при некоторых упрощающих предположениях. Предположим, что целевой компонент хорошо растворяется в жидкости, и поэтому интенсивность процесса массообмена между жидкостью и газом пропорциональная концентрации целевого компонента в газе. В этих условиях можно считать 0 (0 ) 0. Физически такая ситуация реализуется, например, при хемосорбции, когда равновесная концентрация поглощаемого компонента в газовой фазе равна нулю. При 0а(0 ) = О уравнение (1.2.30) становится независим мым от уравнения (1.2.31), поскольку в (1.2.30) входит только функция 00 (л , t) При этом для получения решения о(а , t), системы достаточно решить одно уравнение (1.2.30) функцию QL x,t), после того как найдена функция можно найти [c.206]


    Применение преобразований Фурье и Лапласа весьма целесообразно при изложении проблем регулирования процессов. В настоящем Приложении даются краткая сводка практических положений теории преобразования и выводы некоторых формул. [c.340]

    Считается что первым, кто нашел и начал использовать аналитическое выражение (формулу) закона нормального распределения был английский математик А. Муавр (1667-1754). Позже немецкий математик К. Гаусс (1777-1855) доказал и опубликовал в работе "Теория комбинации наблюдений, подверженных наименьшим ошибкам" [37] результаты, применение которых в отдельных случаях позволяет судить о величинах по их средним значениям. В связи с этам закон нормального распределения назьшают иногда законом Гаусса. Решения некоторых задач о границах применимости нормального закона найдены французским математиком П. Лапласом (1749-1827) и опубликованы в [45]. Поэтому одно из аналитических выражений, описьшаюпщх часто применяемый частаый случай нормального закона назьшают функцией Лапласа. В дореволюционной России сочинения по теории вероятностей ведущих ученых Западной Европы многократно издавались в русских переводах. Папример, был издан перевод книги П. Лапласа "Опыт философии теории вероятаостей"[47.  [c.70]


Смотреть главы в:

Химическая термодинамика -> Некоторые применения формулы Лапласа




ПОИСК





Смотрите так же термины и статьи:

Лаплас

Лапласа формула



© 2025 chem21.info Реклама на сайте